Antigravitation — 2 : La piste de l’antimatière

Le premier article sur le sujet de l’antigravitation s’attardait à définir sa véritable nature afin de la distinguer des autres forces capables de s’opposer à la gravitation sans dire pour autant que ce sont des forces antigravitationnelles.

Dans cet article, j’aborde les différences entre les forces afin de trouver une façon de concevoir de l’antigravitation. L’antimatière s’avèrerait-elle une solution réaliste ? Vous découvrirez la réponse à cette question.

antimatter

Force contre force

Un autre point très important à aborder avant de poursuivre est la grandeur de la force gravitationnelle à comparer aux autres forces de la Nature, l’électromagnétisme, par exemple.

Un petit exercice consiste à comparer la force attractive électrostatique entre un proton et un électron à la force gravitationnelle s’exerçant entre ces deux mêmes particules lorsque placés à même distance dans les deux cas.

La force électrostatique s’avérera 2,3 x 1039 fois plus grande que la force gravitationnelle. La force électrostatique est 2 300 000 000 000 000 000 000 000 000 000 000 000 000 de fois plus grande que la force gravitationnelle !

En résumé, la force gravitationnelle est si faible que la masse de la Terre entière ne suffit même pas à empêcher un tout petit aimant de soulever une clé. La puissance électromagnétique d’un minuscule aimant s’oppose ainsi aisément à la puissance gravitationnelle de toute la masse de la Terre!

Ce n’est pas de l’antigravitation

Dans l’exemple précédent, l’aimant n’est pas une force antigravitationnelle. C’est une force électromagnétique appliquée en direction opposée à la direction de la force gravitationnelle qui s’exerce sur la clé. Ce faisant, la force résultante déterminera si l’aimant ou la Terre aura le dessus l’un sur l’autre en soulevant la clé ou en la laissant gésir au sol.

T2L2661

Ce sont deux forces de nature totalement différentes dans leur essence, alors que l’antigravitation serait de nature identique à la gravitation, mais avec une composante répulsive plutôt qu’attractive. Ce serait comme pour  les forces électrostatiques qui possèdent les deux composantes. Des charges électriques identiques se repoussent et des charges électriques inverses s’attirent. On peut donc véritablement parler de forces électrostatiques et de forces antiélectrostatiques.

L’idée est de savoir si la gravitation possède ce même genre de double comportement et la réponse jusqu’à maintenant est non. Cependant, faut-il s’arrêter de chercher pour autant ?

L’antimatière est-elle une solution ?

Si la matière creuse l’espace-temps, il serait plausible que son opposé fasse le contraire et le surélève, créant par le fait même une force répulsive entre matière et antimatière, mais aussi entre l’antimatière et elle-même?

Neutrino_GIF_M1.gif

Cette hypothèse est encore débattue aujourd’hui quoique la très grande majorité des physiciens n’y croient pas. Pour eux, l’antimatière n’est qu’une histoire de charges électriques inverses et ne devrait pas influencer la manière dont sa masse se comporte avec l’espace-temps. Effectivement, on ne distingue aucune différence de masse entre un électron et un positron, ce qui laisse croire en une similarité gravitationelle comportementale.

Le problème est d’observer le phénomène. Puisque les forces électrostatiques sont 1039 fois plus grandes que les forces gravitationnelles, la faible répulsion antigravitationnelle, si elle existe, passe totalement inaperçue à côté des autres forces.

Mais une hypothèse non démontrée se fout des consensus. La physique n’a pas pour but de contenter les physiciens en leur donnant raison. Il se pourrait qu’ils aient tous tort et que l’antimatière engendre effectivement une force antigravitationnelle.

Antimatière et objets volants

Dans l’éventualité que l’antimatière engendre effectivement une force réellement antigravitationnelle, pourrait-on au moins s’en servir pour faire voler des engins?

Mark-Tomion-StarDrive-Device-1

En postulant qu’un atome d’antimatière engendre une force antigravitationnelle équivalente à la force gravitationnelle d’un atome de matière, il faudrait embarquer dans l’engin volant une quantité d’antimatière équivalente à la matière de toute la Terre pour compenser la gravitation terrestre.

L’antimatière semble donc une solution totalement irréaliste pour créer une forte antigravitation capable de se dégager de la gravitation terrestre.

Et si l’antigravitation était bien plus forte que la gravitation pour une masse semblable?

researchers-discover-angle-particle-which-is-both-matter-and-antimatter-at-the-same-time

Voilà une idée intéressante, mais ne s’appuyant sur rien. Pourquoi l’espace se courberait-il bien plus facilement en présence d’antimatière que de matière? La trame d’espace-temps serait extrêmement rigide à la présence de matière et totalement souple à celle de l’antimatière. Il faudrait trouver un mécanisme permettant de rendre l’espace-temps très souple en présence d’antimatière. Aucun indice ne semble pointer dans cette direction.

En fait, la preuve aurait probablement été trouvée puisque nous aurions découvert une différence de comportement entre un électron et un positron dans un même champ électromagnétique. Leurs déviations diffèreraient puisque la force antigravitationnelle du positron deviendrait non négligeable par rapport à sa force électromagnétique. Toutes les observations montrent une parfaite équivalence entre les deux particules. On peut donc réfuter une asymétrie forte entre les forces gravitationnelle et antigravitationnelle.

L’antigravitation forte existe-t-elle?

Nous ne connaissons rien pour l’instant qui parviendrait à surélever fortement le tissu de l’espace-temps. Je dirais, c’est normal puisque nous ignorons tout de la nature de cette trame. L’espace-temps reste un concept dont nous sommes encore loin de découvrir sa nature profonde. Si nous y parvenons un jour, nous serons plus à même de trouver un moyen de jouer sur sa trame pour lui faire produire des bosses répulsives plutôt que des creux attractifs.

Et si la solution se trouvait à portée de main ?

Pour ma part, j’aperçois un moyen. En injectant du temps dans la trame d’espace-temps, celle-ci se distendrait. Mais comment entrer du temps dans une sorte de seringue et l’insérer dans le tissu spatio-temporel? Voilà un joli défi technologique. Cependant, le temps regorge d’atouts non négligeables, il ne possède aucune masse, ainsi il devient facile d’en transporter autant qu’on veut à bord d’un objet volant. Reste à comprendre comment jouer avec le temps afin d’étirer la trame spatiale en sens inverse de la gravitation.

Dans le troisième article, j’abordera une façon d’y parvenir et ce faisant, de concevoir rien de moins que des… ovnis.

***** À suivre dans le prochain article*****


 

 

Antigravitation — 1 : Ce qu’elle est et n’est pas

Je consacre une série de trois articles à ce vaste sujet, car j’en ai long à dire. Ne ratez pas de les lire tous, des surprises de taille vous attendent.

Mais avant de savoir si l’antigravitation existe ou peut exister, il faut comprendre quelques principes de base dont ceux concernant évidemment la gravitation.

Détournement de sens

Dans la culture populaire, on mélange aisément plusieurs concepts physiques en donnant à des phénomènes des noms inappropriés et l’antigravitation souffre malheureusement de l’ignorance des gens qui utilisent ce terme à tort et à travers.

20-5-8-c2_corbeau_vol

Tout comme les oiseaux et les avions qui parviennent à combattre la gravitation en lui opposant une force ayant une composante verticale de sens opposé, ils ne créent pas une force antigravitationnelle pour autant.

T2L2661

L’aimant soulevant des clés ne développe pas une force antigravitationnelle. Un objet volant grâce à des forces électromagnétiques ne produit pas non plus une force antigravitationnelle.

RoswellSubSystems22

Toutes ces forces n’ont rien à voir avec la nature de la gravitation, même si elles parviennent à s’y opposer. Ce ne sont que des cas de forces très distinctes qui se compensent ou s’additionnent selon l’angle créé entre les différentes forces en présence (addition vectorielle).

forum_246960_1

Une force qui s’oppose à la gravitation ne s’appelle pas une force antigravitationnelle. Pour savoir ce qu’est réellement une force antigravitationnelle, il faut tout d’abord bien comprendre ce qu’est la force gravitationnelle.

La gravitation

Depuis les travaux d’Einstein publiés en 1915, on sait que la gravitation est une force attractive engendrée par la déformation de la trame d’espace-temps causée par les masses qui s’y trouvent. Les masses attirent à elles toutes autres masses parce que le tissu de l’espace-temps s’est déformé en conséquence. Bien qu’étant mieux ressentie à proximité d’un objet massif, cette force s’exerce sans limites de distance.

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

De façon imagée, les masses creusent la structure de l’espace-temps, elles ne la surélèvent pas. Ce faisant, la force gravitationnelle est toujours de signe positif, indiquant une attraction des masses.

Son opposé, la véritable antigravitation

L’antigravitation serait le phénomène exactement opposé à celui-ci. Ainsi, quelque chose devrait être en mesure de surélever la trame de l’espace-temps afin de générer une force qui tendrait à éloigner les objets les uns des autres, générant une force gravitationnelle de signe négatif, répulsive, une antigravitation. Pour reprendre l’image de la trame, l’antigravitation génèrerait dans celle-ci des bosses plutôt que des creux. Les creux, font de la trame un attracteur. Les bosses créées par l’antigravitation en feraient un diffuseur, un disperseur des masses.

Trame-Masse

On sait maintenant ce qu’est la véritable antigravitation.

Dans le prochain article, il sera question de comparer la gravitation aux autres forces de la Nature afin de bien comprendre de quoi il en retourne. La piste de l’antimatière sera mise à l’épreuve.

***** À suivre demain *****