Relativité de l’existence

Bien que le titre utilise le mot « relativité », cet article traite plutôt de physique quantique. Non !Non! Ne disparaissez pas si vite, car l’effet que je décris aujourd’hui est plutôt étonnant, voire sidérant.

Imaginez Alice, une jeune fille très attentive. Elle observe un vide parfait. Ce vide possède donc une température de zéro Kelvin (0 K) qui est la température absolue. Pourquoi ? Parce qu’une température nait de particules qui s’entrechoquent. S’il n’existe aucune particule pour s’entrechoquer, alors rien ne peut générer de la température. Elle vaut donc 0 K (-273,15°C). Jusqu’ici, rien de très compliqué.

Prenons maintenant le petit ami d’Alice, il se prénomme Bob et il aime faire de la vitesse. Il embarque à bord d’une fusée pour impressionner sa flamme. Pour ne pas se causer trop de désagréments, il ajuste l’accélération du bolide à 1 G, c’est-à-dire que son corps ressent le même poids que s’il restait à la surface de la Terre.

new-glenn

Bob passe en trombe devant Alice qui continue de mesurer ce vide absolu plutôt que de s’intéresser aux exploits de son copain. Un peu frustré, mais tout de même curieux, Bob utilise lui aussi un appareil pour mesurer la température de ce vide envoûtant.

Une fois de retour auprès d’Alice, il la questionne sur ce qui la fascinait tant.

— Je m’intéresse au rien, au vide absolu dont j’ai précisément noté sa température. Il reste parfaitement à zéro Kelvin.

On-dit-que-la-CNV-c-est-pour-ne-pas-s-engueuler_imagePanoramique647_286

— Désolé de te décevoir, belle laborantine de mon cœur, mais j’ai également pris sa température et elle ne valait pas zéro Kelvin.

Les deux appareils sont pourtant parfaitement calibrés et l’un ne donne pas la même température que l’autre. Alors qu’Alice lit un zéro absolu, donc l’inexistence de particules, la lecture non nulle de Bob signifie qu’il a détecté des particules dans ce même espace censé être entièrement vide.

L’un des deux a-t-il tort ? Non. Les deux amis ont raison, mais dans leur propre réalité qui s’avère être différente, car leur état par rapport à ce vide n’est pas identique.

Alice n’accélère pas, tandis que Bob est en accélération constante. Ce seul changement crée des réalités distinctes pour le même espace. Dans un cas, le vide est totalement vide et dans l’autre cas, des particules existent et ce, pour le même lieu physique.

La réalité n’est pas la même pour tout le monde et elle dépend de l’accélération de chacun.

Ce phénomène théorique se nomme « l’effet Unruh » du nom du Canadien à l’origine de sa formulation et elle se présente ainsi.

Thba

Ne fuyez pas encore ! Cette formule, pas si barbare qu’elle y parait, se simplifie pour devenir parfaitement compréhensible. Mises à part les lettres de la température (T) et de l’accélération (a), tous les autres symboles sont des constantes qui peuvent être ignorées pour comprendre la relation qu’entretiennent T et a. Et voici le résultat final.

ta

En bref, la température (T) est proportionnelle à l’accélération (a).

Et pour expliquer la température non nulle que notre ami Bob a lue, son accélération de 1 G génère des particules dans ce vide, dans sa réalité propre, mais pas dans la réalité d’Alice qui est stationnaire. Ainsi, accélérer engendre une réalité distincte, une réalité différente de celle des autres.

L’effet Unruh n’a pas encore été détecté par l’expérience et ne le sera probablement jamais, puisque, vous pouvez vous en douter, il est d’une faiblesse extrême. Une accélération de 1 G n’engendre qu’une température de 4 x 10-20 Kelvin.

Mais engendrer peu d’effets n’est pas synonyme de rien du tout. Ici, c’est le principe qui importe. Plus on progresse dans nos connaissances sur l’univers et plus sa réalité pure et dure se désagrège. Avec l’effet Unruh, elle devient variable et relative à chacun d’entre nous en fonction de notre accélération.

Et justement, en parlant d’accélération, on sait depuis Einstein qu’il n’y a aucune différence entre se promener en fusée qui accélère à 1 G et être attiré par la gravitation terrestre en gardant les pieds bien campés au sol.

Dépendant du lieu où nous sommes sur Terre, la force gravitationnelle varie légèrement en fonction de la distance nous séparant du centre de la Terre et de la densité du matériel sous nos pieds. On peut alors dire que la réalité est différente pour chacun d’entre nous.

Bienvenue dans ma réalité qui n’est pas la vôtre !

Heureusement, direz-vous !

Le mystère de l’observation

En physique quantique, l’observation joue un rôle critique. Vous avez certainement entendu parler du chat de Schrödinger placé dans une boite dotée d’un mécanisme de désintégration radioactive qui, si elle survient, brise une fiole de gaz mortel. Si on laisse le chat dans la boite durant un temps équivalent à la demi-vie de l’atome radioactif, il a une chance sur deux de mourir.

chat-schrodinger-bandeau-750x400

D’ailleurs, je félicite ce physicien d’avoir placé un chat dans sa boite. Il partage certainement avec moi une aversion pour ces boules de poils volatilophages.

En physique quantique, le concept du chat miaulant à moitié s’interprète légèrement différemment. Il n’est plus simplement question de statistique du genre « soit l’un, soit l’autre », mais plutôt « moitié l’un et moitié l’autre ». Ainsi, le chat se trouve simultanément dans les états vivant et mort jusqu’à ce qu’un observateur ouvre la boite pour constater lequel des deux a préséance. Mais avant ce constat, le chat partage les deux états à parts égales.

Évidemment, Schrödinger a utilisé la métaphore du chat pour expliquer des phénomènes quantiques réels. À l’échelle macroscopique, à notre échelle, les phénomènes quantiques se sont depuis longtemps résorbés et jamais on ne pourra établir qu’un chat soit simultanément mi-mort mi-vivant. Toutefois, à l’échelle microscopique, la simultanéité de deux états doit être considérée comme exacte. Il ne s’agit pas simplement d’une image, mais de la stricte vérité.

Slits

Il faut cependant expliquer une différence fondamentale entre l’observation d’un chat et l’observation d’un photon, d’un électron ou d’un atome pour mieux comprendre la subtilité du phénomène quantique.

Dans notre monde quotidien, un bon observateur se doit de ne pas interagir avec son sujet d’étude s’il veut obtenir des données recevables. S’il perturbe le milieu observé, ses conclusions seront biaisées. En physique quantique, il est impossible d’observer sans perturber l’élément étudié. On ne peut pas connaitre les propriétés d’un photon ou d’un électron sans le faire interagir avec un instrument de mesure quelconque. Ainsi, l’observation quantique ne se contente pas d’observer à distance, elle perturbe violemment son sujet d’étude.

eclipse-lune-2018-bulgarie

En fait, si on n’interagit pas avec une particule, elle semble rester totalement intangible et son existence ne devient réelle que lorsqu’il y a une observation. Einstein avait ce principe en horreur. Il disait : « Je ne peux pas croire que la Lune n’est pas là lorsque je ne la regarde pas ».

Cette façon de voir n’est pas correcte. On devrait plutôt penser de la sorte. Même si la Lune n’existe pas véritablement lorsqu’on ne l’observe pas, les informations la concernant sont, elles, bien réelles. Ainsi, notre astre continue de générer des marées même si personne ne l’observe puisque l’espace conserve toutes les informations concernant l’ensemble de ses particules.

Ainsi, que la Lune prenne forme et couleurs uniquement lorsqu’on la regarde, ça ne change rien puisque ses informations restent bien présentes. Elles sont simplement lues, ou pas.

Je vous propose de vous référer à un autre de mes articles concernant l’univers informatif. Il est plus facile de démystifier les bizarreries de la physique quantique lorsqu’on imagine un univers où tout n’est qu’informations plutôt qu’un univers constitué à la base de matières et d’ondes. Oui, matières et énergies finissent par émerger par une interaction ou par une observation. Cependant, leurs informations restent toujours tapies au plus profond de la trame spatiotemporelle et ce sont elles qui comptent véritablement au bout du compte.

L’angle de Planck

Si vous ne connaissez pas les dimensions de Planck, sachez qu’elles sont connues depuis 120 ans déjà. Ce sont les dimensions extrêmes de notre Univers. Dans le cas des longueurs de distance et de temps, elles valent environ 10-35 mètre et 10-44 seconde.

Il est impossible de fragmenter ces valeurs, elles sont les atomes (éléments insécables) de notre univers. De là à imaginer que notre univers est discontinu, il y a un pas à franchir qui pour moi devient évident, mais pas pour une majorité de physiciens qui croient encore, malgré cela, que le temps coule sans faire de bonds et que l’espace n’est pas atomisé.

Cependant, pour rendre compatibles nos deux piliers actuels de la physique, la physique quantique et la relativité, les théories basées sur la discontinuité du temps et de l’espace semblent prometteuses. Certains travaux de physique théorique actuels voient l’espace composé de microscopiques tétraèdres de longueur équivalente à celle de Planck, soit 10-35 m.

Je me suis donc posé la question suivante. Si l’espace est discret, discontinu, pourquoi n’en serait-il pas autant des angles de rotation ? Pourquoi tous les angles seraient-ils permis ? L’Univers est discontinu ou ne l’est pas et si c’est le cas, alors les angles le sont également.

Mais je ne trouve rien sur ce sujet. Il semblerait que personne n’a pris la peine de se poser la question. Rien, nada, le vide, non le néant. Pourtant, je ne peux concevoir une longueur minimale pouvant tourner librement de façon totalement continue, sans limite minimale.

Comment peut-on concrètement représenter cet angle de Planck ? Celui-ci aurait le même effet que nos convertisseurs du numérique à analogique actuels. Oui, ces engins qui transforment les bits de nos CD en onde sinusoïdale qu’on peut entendre. En fonction de la résolution de ces convertisseurs, les ondes restituées possèdent plus ou moins de paliers, mais aucune n’est totalement continue. Les sinusoïdes ont des marches, mais nos oreilles ne peuvent les percevoir si elles sont minuscules.

PaliersPlus

L’angle de Planck causerait le même effet dans les ondes électromagnétiques. Cependant, à cause de sa petitesse, il nous est très difficile de distinguer des paliers dans la lumière reçue ou émise. Par l’observation, il est cependant possible de déterminer sa limite supérieure, mais seule une théorie nous permettrait d’en donner une valeur précise.

Pour générer des ondes à paliers, le rotateur doit tourner en saccade, avancer coche par coche, comme une horloge dont la trotteuse marque chaque seconde d’un tic caractéristique.

Il existe la notion de « temps de Planck » qui se rapporte au temps que prend la plus petite longueur d’onde possible à parcourir son cycle, sa période. Ce temps déterminé par les constantes fondamentales vaut 5,391 x 10-44 seconde. Mais ce temps représente l’ensemble du temps passé pour faire une rotation complète, l’équivalent de la minute pour une trotteuse, alors que moi je cherche l’équivalent de la seconde. Pour une trotteuse, son angle minimal vaut 6 degrés, puisque 360°/60 s = 6°/s.

Il existerait donc un temps plus petit que le temps de Planck, c’est le temps de chaque palier que possède une onde. En considérant le pire, soit un seul palier par valeur positive et négative et les deux paliers à zéro, on doit diviser le temps de Planck par 4 pour trouver le temps de chacun des paliers d’un cycle.

PaliersMin

En revanche, plusieurs paliers divisent d’autant la plus petite division temporelle. Il est possible que le temps de Planck fasse qu’il n’existe qu’un seul palier par demi-cycle et qu’ainsi la résolution angulaire, l’angle de Planck, à cette hyperfréquence soit égale à 90°. L’angle de Planck déterminerait le type de maillage spatiotemporel. S’il vaut 90°, l’espace-temps serait une construction formée de cubes empilés.

Cependant, une de nos théories actuelles de la gravitation quantique fait intervenir des mailles spatiotemporelles de la forme d’un tétraèdre. Si cette description est exacte, l’angle de Planck serait plutôt équivalent à 30° et il existerait donc quatre paliers de valeurs distinctes (en incluant le zéro) par demi-cycle plutôt que deux.

Quels seraient les impacts d’un angle de rotation de Planck de 30° sur notre compréhension actuelle de l’univers ?

L’accélération de l’expansion de l’univers pourrait ainsi n’être qu’un artéfact et ce n’est pas rien. Les galaxies lointaines apparaitraient plus éloignées que la réalité. Ainsi, nos estimations actuelles de l’énergie sombre seraient erronées et même peut-être totalement fausses. Le destin de notre univers en serait chamboulé puisque le Big Rip ne surviendrait pas.

 Ce serait une excellente nouvelle puisque selon la théorie actuelle, tous nos atomes finiront écartelés, déchirés par cette énergie sombre délétère.

Je mise sur un angle de Planck non nul qui pourrait peut-être sauver notre univers d’une mort horrible que nous promet actuellement ce que nous appelons l’énergie sombre, un terme signifiant que nous ignorons complètement sa nature.

Un angle de Planck valant 30° réduirait à néant l’obligation de recourir au principe d’une énergie sombre répulsive pour expliquer ce que l’on observe. Surtout, il redéfinirait les dimensions et le destin de l’Univers.

Un Truman Show

Vu l’état de décrépitude de notre physique moderne qui peine à expliquer un tout petit 5 % de ce que l’Univers contient, vu l’incapacité de prendre en défaut nos théories actuelles qui permettraient d’expliquer l’actuel inexplicable, vu les contradictions systémiques et irréconciliables entre nos deux piliers de la physique que sont le quantique et la relativité, il devient de plus en plus tentant, et peut-être sage, de faire table rase de toutes nos connaissances engendrant notre embourbement pour se tourner vers d’autres théories plus exotiques.

Parler de frilosité des scientifiques à cet effet est un euphémisme. Ces gens aiment bien évoluer de choses sûres en choses sûres, bâtir l’avenir sur le passé, progresser comme on monte un escalier. Pourtant, l’humanité a connu des révolutions scientifiques à plusieurs reprises. On n’a qu’à penser que le temps n’est plus considéré comme étant une grosse horloge universelle battant une mesure identique pour tous et en tous lieux. Et que dire de notre si contre-intuitive physique quantique avec sa délocalisation, son intrication et ses états superposés ?

hero_803406d7-6b9e-4986-a902-3c7a74e9f0b0

Non, la physique ne progresse pas d’un échelon à l’autre et aujourd’hui, nous nous retrouvons au pied d’une falaise exempte d’escalier ou d’échelle de corde pour nous aider à cheminer. La prochaine étape s’avère la plus difficile de toutes celles que nous avons déjà atteintes. Elle demande de cesser d’observer comme nous le faisons actuellement, avec notre regard constamment tourné vers l’arrière. Elle nous demande de nous projeter dans un ailleurs qui, pour le moment, nous est inconcevable.

Pourtant, l’illogisme apparent de la physique quantique nous a préparés à réaliser un nouveau saut vers l’inconnu et cette fois-ci, il risque de dépasser tout entendement. Parmi les nouvelles possibilités mises de l’avant, certaines renouent étrangement avec des croyances ancestrales.

Mais ici il n’est pas question de créer de nouveaux dogmes ou de reprendre ceux du passé. La science ne s’intéresse pas aux histoires sans fondements solides. Les théories doivent être associées à des observations actuelles, elles doivent être formalisées pour être prédictives et elles doivent suggérer de possibles méthodes pour les prouver.

Ciel-nocturne-2

Bien sûr, aucune nouvelle théorie émergente révolutionnaire ne contient tous ces éléments dans sa phase initiale. Il faut donc y croire suffisamment pour travailler sans relâche durant sa vie entière sans certitude de voir sa complétude de son vivant.

Parmi les théories exotiques, l’une d’elles m’interpelle particulièrement, pas parce que j’y crois, mais parce que j’ai autrefois écrit une nouvelle intitulée « L’audience » qui reprend plus ou moins le concept énoncé par les scientifiques actuels.

À ne plus rien comprendre de la Nature, il devient plus facile de traverser la rivière nous séparant d’une tout autre façon d’aborder la réalité. Alors, que penser de cette théorie-ci ? Et si nous vivions dans un monde semblable à un cinéma ? Tout le cosmos que nous observerions serait une illusion conçue par un quelconque metteur en scène. Les illogismes scientifiques actuels s’expliqueraient tellement bien si tout n’était qu’effets spéciaux plutôt que réalité dure ?

Nous ne nous insurgeons pas lorsque notre cinéma triture les lois de la physique afin de nous faire vivre de belles et grandioses émotions. Pourquoi en serait-il autrement avec ce que nous appelons notre Univers ?

L’Univers tel que nous l’étudions aujourd’hui pourrait fort bien n’être qu’un beau simulacre de réalité, une façon de retenir notre attention, peut-être même, un bon moyen de nous observer.

De plus, cette théorie, moins folle qu’elle peut paraitre, expliquerait parfaitement le paradoxe de Fermi. Les extraterrestres n’ont pas encore peuplé tout l’Univers, même si ça aurait dû survenir depuis longtemps, parce que l’Univers ne ressemble pas du tout à ce qu’on pense observer.

11051-1532336916

Un jour, peut-être, une étrange histoire nous tombera sur la tête, elle réveillera tous nos doutes, elle confirmera nos pires craintes, elle prouvera que nous sommes des acteurs involontaires dans une quelconque émission de télé-réalité regardée par des entités quelconques. 

En définitive, l’Univers pourrait très bien n’être qu’un immense Truman Show.

truman-show-the-1998-002-jim-carrey-holding-machine-bfi-00n-cqj.jpg

Platitude spatiale

Durant toute notre enfance, nous avons suivi avec intérêt ou, au contraire, avec amertume ou difficulté, des cours de géométrie durant lesquels nous avons calculé des angles de triangles totalisant 180°, nous avons appris que deux droites parallèles ne se rejoignent jamais et que si elles ne sont pas parallèles, elles finissent par se toucher en un seul point.

Même si cette formation date de longtemps, la majorité des gens pensent encore de cette façon. Dans la vie de tous les jours, cette géométrie est valable et on lui a donné le nom de géométrie euclidienne en hommage au célèbre géomètre grec Euclide.

Pourtant, ce que nos profs ont passé sous silence afin de respecter le cursus et nos prétendues capacités limitées à apprendre, et probablement parce qu’ils ne connaissaient rien d’autre, c’est que cette géométrie constitue une exception, un idéal jamais réellement atteint, une limite entre deux autres géométries qui se touchent exactement à cet endroit. En réalité, la géométrie euclidienne n’existe pas vraiment. Elle constitue simplement une approximation très pratique, car beaucoup plus simple que les sœurs siamoises opposées que sont les deux autres géométries non euclidiennes.

L’exemple le plus simple d’une géométrie non euclidienne est notre bonne vieille Terre. Au ras du sol et sur de courtes distances, les règles de la géométrie euclidienne semblent parfaitement exactes. Les triangles possèdent des angles totalisant 180°, les droites parallèles ne se touchent pas et si des droites se touchent, elles le font en un seul point.

couleur ours.png

Pourtant, il suffit de prendre de l’altitude et tracer de très grands triangles et de grandes droites pour constater qu’Euclide ne faisait que des approximations puisque la somme des angles d’un triangle formé de trois lignes droites au sol totalise plus de 180°. Deux méridiens sont des droites parallèles et pourtant ils se rejoignent. Et même si on les considère comme étant non parallèles, ils se recoupent aux deux pôles, et non juste une fois. La surface de la Terre étant convexe (sphérique), sa géométrie n’est pas euclidienne et les règles établies par ce génie du passé ne s’appliquent pas.

En utilisant des surfaces concaves plutôt que convexes, on obtient des triangles dont la somme des angles est inférieure à 180° et des droites parallèles qui elles aussi se rejoignent. Une selle de cheval et les toits de constructions s’y apparentant comme au Saddledome de Calgary sont de bons exemples de géométries concaves (hyperboliques) non euclidiennes.

6842e15a63827407284b31b3acd603b.jpg_1200x630.jpg

On comprend ainsi mes affirmations précédentes. La platitude géométrique est un mythe puisque rien ne peut vraiment être absolument plat.

Vous seriez probablement tenté de vous reporter à l’espace, à l’ensemble de l’Univers et à ses trois axes spatiaux. Selon vous, ils forment certainement des angles parfaitement droits entre chaque paire d’axes. Comment pourrait-il en être autrement ?

Ce concept était convenu avant les travaux d’un certain Albert Einstein qui publia en 1915 un article fondamental de physique qui devint la théorie de la relativité générale.

Sans entrer dans ses détails, elle contient un élément important se rapportant à la platitude spatiale. Il consiste dans le fait que l’espace se plie en présence de masse. Considérant que l’univers contient de la masse, il se replie de manière concave ou convexe dépendant de la quantité de matière qu’il contient. Pas suffisamment d’énergie et il ressemble à une selle, un peu trop, et il prend la forme d’une sphère.

courbures1

Toutes les expériences visant à déterminer la forme de l’Univers se sont soldées par un étrange constat. Même les plus précises tendent à montrer que l’Univers serait… parfaitement plat. Si ce résultat vous semble peut-être normal, pour moi ce hasard me semble plutôt difficile à avaler. L’Univers posséderait exactement la quantité de matière précise pour obtenir un espace parfaitement plat respectant la géométrie euclidienne.

Pensez à une machine choisissant au hasard un nombre compris entre –∞ et +∞ et qu’elle tombe miraculeusement sur le zéro. C’est impossible que l’Univers soit parfaitement plat et pourtant il l’est.

Je me suis questionné sur cette étrange coïncidence, car je n’y crois pas. Je devais trouver une cause, une façon d’expliquer la platitude spatiale sans faire intervenir le plus curieux des hasards.

Rétroaction

La seule autre façon logique de retrouver une géométrie spatiale euclidienne est que l’Univers possède une boucle de rétroaction qui diminuerait la masse de l’Univers si elle est plus grande que la masse critique et qui l’augmenterait si elle devient trop petite.

L’annihilation ou la création de masse (énergie) surviendrait si la forme de l’espace n’est pas exactement plate. Ainsi, un univers convexe ou concave serait une situation instable cherchant à retrouver son état de plus basse énergie qui serait un univers plat.

Pensez à une plaque métallique qu’on cherche à plier. Qu’elle courbe dans un sens ou dans l’autre, elle revient inévitablement à son état qui lui demande le moins d’énergie, sa platitude.

Autre conséquence non négligeable de ce phénomène, le principe de la conservation de l’énergie ne serait pas une loi, mais l’observation de cette rétroaction.

L’Univers peut créer de l’énergie, mais il peut également en détruire. L’équilibre s’obtient par rétroaction. Trop de destruction engendrerait une accélération de création d’énergie et vice versa.

Mon idée de rétroaction expliquerait la platitude spatiale ainsi que la loi de la conservation de l’énergie et surtout, elle repousse l’idée d’un incroyable hasard survenu au moment du big bang créant exactement la bonne quantité de matière pour engendrer un univers parfaitement plat.

Je poursuivrai cette idée dans un autre article afin d’expliquer ce qui survint juste après le moment zéro signant la création de notre Univers. J’en profiterai pour expliquer plus en détail le schéma de la boucle de rétroaction conservant la platitude de l’espace.

Des univers parallèles semblables au nôtre

Fringe, Flash, deux séries télévisées mettant en scène des univers parallèles à la fois semblables et légèrement différents. Cet intéressant concept cinématographique permet plein de rebondissements, mais est-il pour autant plausible ?

Certains scientifiques croient en ce concept en affirmant qu’il existerait 10500 univers, donc une quantité non négligeable très semblables au nôtre, avec des copies presque identiques de moi. Un moi, peut-être, avec un peu plus de cheveux, un peu plus d’argent, un peu plus de… bide ? Ben là ! Ayant presque les mêmes amis, presque la même famille et presque la même vie.

fringe-science-03.width-800

Personnellement, si vous me donnez de bonnes raisons d’y croire je suis prêt à admettre l’existence d’autres univers en quantité « astronomique ». Mais même à l’aide de très bonnes substances illicites, je ne franchirais pas la ligne consistant à croire en des copies multiples de moi-même, vivant une existence presque semblable.

Ces moi 2.0, 153.0, 64 950 937,0, etc., ne peuvent pas exister même en comptant sur 10500 univers. Voici pourquoi.

Tout d’abord, tous ces univers devraient être issus d’une matrice unique, homogène, sans imagination, sans aucune imperfection non plus, sans distinctions, sans élément perturbateur externe ou interne, au même instant, avec la même quantité de matière et d’énergie, avec les mêmes lois de la physique et les mêmes valeurs des constantes fondamentales. C’est assez difficile à croire. Changez un iota à tout cela et l’univers se comportera différemment du nôtre, causant l’impossibilité de lui ressembler, même juste un tout petit peu.

Flash-Doublon

Je serai toutefois bon joueur et malgré cette très forte improbabilité, je passe par-dessus. Admettons qu’il existe bien 10500 jumeaux de notre propre Univers. Quelle est la suite de mon raisonnement pour rejeter l’existence de ces multiples et pâles copies de moi-même ? La réponse tient en un mot. Je vous le donne d’ici peu.

Pour en arriver aux univers semblables, j’ai dû postuler qu’ils sont tous régis par les mêmes lois. Il n’est donc plus question de virer les talons pour s’en tirer avec les conséquences de ce choix qui a favorisé jusqu’à présent les « pro-multivers quasi identiques », car sans ce choix, leur théorie ne tient plus.

screen-0

Ce postulat est, malheureusement pour les partisans de cette théorie, un sabre laser à deux rayons. Ouais, cette arme n’existait pas au moment d’inventer l’expression avec le couteau à deux tranchants du même côté et toujours muni d’une poignée sécuritaire. Il suffit de garder sa main sur la poignée et le danger de la double lame reste pour l’ennemi seul. Tandis que le double laser représente bien mieux le danger d’un choix bien défini. J’ai remplacé le fameux couteau par l’arme de certains Jedi parce que le laser double a ses avantages, mais aussi un très gros inconvénient. Il s’avère impossible de frapper droit au cœur par une attaque frontale. Évidemment, du coup, le second rayon vous tranche les parties vitales. Pas étonnant que Dark Maul ait perdu son combat avec un tel désavantage ! Mais je m’éloigne du sujet principal, j’y retourne.

Puisque les univers sont régis par les mêmes lois et qu’ici, la physique quantique mène notre monde, elle sévit également partout ailleurs. Ceux qui connaissent les aboutissants de la physique quantique ont déjà compris les conséquences. Pour les autres, je m’explique.

La physique quantique stipule que notre réalité n’est pas conçue de particules solides pouvant être précisément situées dans l’espace et le temps. Le hasard est au cœur de son fonctionnement. Par exemple, il est impossible de connaitre la position exacte d’un électron et encore moins de prévoir là où il se situera un peu plus tard. Cette impossibilité n’est pas due à une difficulté non encore résolue, elle est entièrement systémique. Il n’y a aucun moyen de le savoir parce qu’il n’existe aucun moyen de le savoir parce que le monde ne fonctionne pas ainsi. Voyez un électron, non pas comme une bille, mais comme une vapeur de… probabilités. 

Ainsi, les différents univers ne peuvent pas rester presque identiques au-delà de l’instant zéro à cause du hasard intrinsèque régissant ses plus intimes constituants. Ils vont tous diverger et vivront leur propre histoire même s’ils proviennent d’une matrice les ayant créés identiques.

Depuis le début de notre Univers, soit 13,8 milliards d’années, tous les atomes qui en font partie ont évolué au hasard. Et même si certaines lois globales engendrent une direction à l’évolution, le hasard empêche toute similitude. Ainsi, depuis l’instant zéro, les différents univers s’éloignent les uns des autres. 

2016-11-18 CERN (10) ca

Pour ceux qui ont entendu parler de l’intrication quantique, celle-ci n’est d’aucun secours dans ce principe. L’intrication ne s’applique pas aux positions-impulsions des particules. Ainsi, l’interaction chimique des électrons est bien plus une affaire d’environnement. Le spin permet ou interdit l’interaction, mais ne dicte pas avec quel autre élément précis s’effectuera un couplage. 

Après 1060 parcelles de temps où le hasard existe en chacune d’entre elles, il est plus que raisonnable de considérer comme impossible l’existence de deux univers contenant un autre Corbot. Dieu, merci ! Pour vous, comme pour moi.

Un trou noir dans le système solaire ?

Bon ! Bon ! Les grands mots sont lancés ! On peine à trouver la fameuse planète 9, aussi connue sous les noms planète X, Nibiru, etc., beaucoup de noms pour un objet toujours hypothétique !

Toutefois, les hypothèses se raffinent et les probabilités concernant la présence d’une autre planète dans notre système solaire continuent de croitre. Aujourd’hui, peu d’astronomes raillent du sujet contrairement à il y a vingt ou même dix ans. Ce ne sont plus les apôtres du Nouvel Âge qui parlent, ce sont de très sérieux scientifiques équipés de superordinateurs afin d’appuyer leurs prétentions.

Ils ne peuvent pas expliquer certaines perturbations d’objets lointains dans le système solaire autrement que par une planète qui voyagerait à ses confins. Une planète d’une dizaine de fois la masse de la Terre. Une planète à l’orbite très excentrique. Une planète dont la révolution autour du Soleil durerait quelques dizaines de milliers d’années et, comble de malchance, se situerait actuellement à son aphélie à 150 milliards de kilomètres, le point de son orbite le plus éloigné du Soleil et de nous par conséquent. En comparaison, la Terre est mille fois plus proche du Soleil que ne le serait actuellement ce fameux objet perturbateur transneptunien.

Ciel-nocturne-2

La ceinture de Kuiper se situe au-delà de Neptune et abrite des astéroïdes et des planètes naines. L’une d’elles ne vous est pas inconnue puisque c’est Pluton. Deux autres ont été repérées, elles portent les noms de Makemake et d’Haumea. Au-delà de cette ceinture rocheuse, on observe une baisse importante et anormale de leur nombre surnommée le précipice Kuiper (Kuiper Cliff). Cette absence de cailloux dans cette région intrigue les astronomes. De plus, on observe plusieurs corps de la ceinture se comportant anormalement. En mettant bout à bout tous ces indices, on obtient la probabilité qu’une planète se promène effectivement dans cette région.

Grâce aux ordinateurs et aux lois de la physique qui les alimentent, on parvient à estimer la masse, l’orbite et la position actuelle de cette hypothétique planète. Évidemment, tous ces calculs ne peuvent être qu’approximatifs, mais si on veut la trouver, il faut bien braquer nos télescopes dans une direction où les probabilités de voir l’objet sont optimales.

Malheureusement, malgré tous les moyens mis de l’avant jusqu’à présent pour la dénicher, rien à faire. On a beau observer avec les plus puissants télescopes, Nibiru reste introuvable là où l’on pense qu’on devrait la voir.

Son existence est donc régulièrement remise en question, mais les perturbations dans la ceinture de Kuiper doivent s’expliquer et pour le moment, on ne voit aucune autre explication plus convaincante que celle de la planète X.

kepler

Or, par déduction logique, si une planète est présente et si on ne parvient pas à la voir alors que nos télescopes en seraient capables, ce n’est pas parce qu’elle n’existe pas, mais parce qu’elle serait inobservable. Et l’on connait une certaine classe d’objets célestes véritables et inobservables, ce sont les trous noirs.

Mais il y a un gros hic. On connait avec certitude deux types de trous noirs. Le trou noir stellaire, généré par une étoile s’étant transformée en supernova. Les restants de cette explosion forment un trou noir lorsque la masse résiduelle est suffisante. Les plus petits trous noirs stellaires frisent 3 fois la masse solaire. C’est bien plus qu’un trou noir de seulement quelques fois la masse terrestre. L’autre trou noir connu est supermassif, des milliers, des millions voire des milliards de fois la masse solaire.

Alors, imaginer un trou noir de seulement quelques masses terrestres n’est pas anodin puisque aucun phénomène connu actuel ne peut en générer d’aussi légers. Observer la planète X si elle était un trou noir serait impossible puisqu’il ferait seulement une vingtaine de centimètres de diamètre et il serait évidemment totalement noir.

Alors d’où proviendrait cet objet minuscule et hyper massif ? On pense que des petits trous noirs auraient été créés tout au début de l’existence de l’Univers, juste après le big bang. L’hypothèse n’est pas nouvelle puisque les conditions permettant leur formation pouvaient exister à cette époque préstellaire. Il se pourrait même que ces objets, les plus gros d’entre eux, aient été à l’origine de la création des galaxies et la raison pour laquelle chacune d’entre elles possède aujourd’hui en son centre un trou noir supermassif. Les granules originelles auraient cru jusqu’à devenir géantes grâce à l’accrétion graduelle de matière. Toutefois, la grande majorité des trous noirs minuscules continueraient de peupler les galaxies et l’un d’entre eux orbiterait dans notre propre système solaire. L’hypothèse est intéressante mais exotique. C’est pourquoi il faut passer en revue toutes les autres possibilités avant de se rabattre sur cette dernière.

La suite est excitante puisque nous pourrions prouver simultanément l’existence d’un corps perturbateur en orbite lointaine ainsi que ces fameux trous noirs primordiaux jamais encore détectés.

Le problème actuel est celui de la quantité de données disponibles. Nos observations de qualité sont trop récentes pour bâtir une hypothèse robuste. Plusieurs années à récolter de nouvelles données devraient permettre d’y voir plus clair. 

Une autre possibilité est qu’il existe non pas une, mais deux planètes éloignées. Ainsi, actuellement nous déduirions la position médiane située entre les deux corps et on ne verrait que le vide, raison des insuccès actuels de nos observations par télescopes.

Ce scénario me plait. Il ne fait pas intervenir d’objets exotiques hypothétiques et il aurait l’avantage de faire cesser la tergiversation entre les noms planète 9 et planète X, chacune s’accaparant l’un d’eux.

Le temps tire-bouchon

J’aimerais bien que le temps du tire-bouchon soit venu. J’accepterais bien un verre de vin, mais je n’ai pas omis de mettre un «» dans mon titre. Je vais donc vous entretenir d’un autre sujet que l’œnologie.

Il y a de cela une bonne dizaine d’années, j’écrivais à un physicien très connu pour lui faire part de ma vision du temps. Bon, je n’ai reçu aucune réponse de sa part, j’imagine qu’il est inondé de courriels de gens qui, comme moi, ont des idées farfelues et osent lui en faire part.

nombre-complexe

Mon idée d’un temps plus complexe que la notion triviale actuelle m’est venue de deux sources. La première est mathématique. Je voyais le temps relatif d’Einstein comme une représentation graphique en 2 dimensions où l’axe horizontal représente le temps réel et l’axe vertical le temps imaginaire afin que la ces deux valeurs génèrent une addition dite complexe du temps x + iy qui est invariable en longueur, à la base de la notion invariable de la vitesse limite, mais variable dans sa valeur angulaire.

La seconde inspiration m’est venue d’un désir de réconcilier deux visions apparemment diamétralement opposées du temps. Le temps linéaire, ce temps que tout le monde ressent, hier précédant aujourd’hui qui lui-même précède demain. Et la seconde notion stipulant que le temps est un cercle, provenant de l’idée que tout finit par recommencer.

Le problème avec le temps en cercle est qu’il est nécessairement faux puisque le futur finirait par rejoindre le passé, une situation ne survenant jamais. Cependant, la notion que tout recommence n’est pas fausse si on considère que les conditions ne sont pas toutes identiques dans les différents cycles.

1280px-Konark_Sun_Temple_Wheel

Prenons par exemple la roue d’un véhicule. À chaque tour, elle revient exactement dans la même position, mais quelque chose a quand même changé, la route sous sa semelle n’est plus la même. On a bien un cycle où tout recommence, mais pas exactement dans les mêmes circonstances, dans les mêmes conditions.

Le temps n’est pas qu’une ligne droite, pas plus qu’il n’est un cercle. Mais si on utilise les deux notions simultanément, le temps ressemble à la tige d’un tire-bouchon. Il y a une progression linéaire, mais on retrouve aussi un cercle qui ne se ferme pas tout à fait sur lui-même.

tire-bouchon_780753

Un temps tire-bouchon possède donc plus qu’une dimension. En fait, il en possède trois. C’est une des raisons pour lesquelles le temps peut être relatif au sens einsteinien du terme. Un temps unidimensionnel est identique pour tous, ce que contredisent toutes les expériences lorsque les vitesses se rapprochent de celle de la lumière dans le vide. D’autre part, un temps seulement bidimensionnel n’aurait peut-être pas de flèche.

En m’inventant cette vision du temps, peu importe si on affirme que le temps soit cyclique ou linéaire, les deux sont vraies. J’ai réuni les deux camps. Parfois, quand je me sens en forme, je vais leur expliquer qu’un temps tire-bouchon ne contredit pas les notions simples d’un temps linéaire ou cyclique, il enrichit les deux visions qui sont dans les deux cas une réduction du nombre de dimensions d’un temps complexe possédant également une flèche, une direction où on ne peut ni mêler ni inverser le passé, le présent et le futur.

À mon avis, le temps tridimensionnel est une formidable source d’inspiration scientifique pouvant permettre d’expliquer plusieurs phénomènes dont le plus connu est sa relativité. Je sais que certains physiciens l’incorporent maintenant dans leur vision du monde. Allez voir sur YouTube cette vidéo de Gavin Wince si vous en avez le temps et le désir, car elle dure 3 h 30.

Il utilise une notion de temps tridimensionnel, même si je considère son explication plus difficile à saisir que mon fameux temps tire-bouchon. Tiens! Il est grandement temps de saisir mon fameux tire-bouchon. Vous connaissez la suite. Santé!

L’image du trou noir

Ça y est, l’équipe de l’EHT y est enfin parvenue. Une image réelle d’un trou noir supermassif a été rendue publique après d’importants délais sur l’échéancier initial. Vous l’avez probablement vue, elle orne également le sommet de cet article. Elle s’est répandue comme une trainée de poudre pour rapidement faire le tour de la planète. Je suspecte seulement la tribu amazonienne de la vallée de la rivière Javary ou celle de l’ile North Sentinel en mer d’Andaman de l’avoir ratée. À part ça, tout le monde en a entendu parler.

Des exploits technologiques multiples et sensationnels ont permis ce tour de force pourtant assez prévisible, car malgré le succès de la mission, malgré l’exotisme de cette image, l’équipe n’a finalement que très peu prouvé de choses qu’on ne savait déjà.

En fait, cette image ne prouve rien de nouveau ou de différent, pas même l’existence des trous noirs. Nous sommes si conditionnés à croire aux seules preuves visuelles qu’on ignore que les vraies preuves de l’existence de ces monstres stellaires ont été récoltées depuis un certain temps sous d’autres formes. Mais voir, c’est croire et l’équipe de l’EHT a profité de notre façon primitive d’aborder la vérité pour réaliser un événement médiatique planétaire.

Les gens formant cette équipe savaient exactement là où pointer leurs instruments afin de réaliser cette image. Ils connaissaient déjà avec certitude l’existence de ce monstre supermassif au centre de la galaxie M87. Et non seulement ils connaissaient son existence, ils connaissaient également sa position exacte, sa masse (6,5 milliards de fois la masse de notre Soleil) et ses dimensions précises. Donc, du point de vue strictement scientifique, ils n’ont absolument rien découvert.

Nous connaissons cet étrange phénomène cosmique qu’est le trou noir depuis plus d’un siècle. C’est bien Albert Einstein qui, en élaborant sa formule de la relativité générale, a permis de comprendre comment les trous noirs pouvaient exister. Cependant, contrairement à bien des déclarations faites en ce sens, le grand homme ne les a jamais prédits. C’est un dénommé Karl Schwarzschild qui a résolu les équations pour une étoile et qui a découvert qu’en deçà d’un certain rayon, la gravitation génère un espace temps si courbe qu’il crée une singularité, un point de densité infinie dans un rayon nul. Einstein croyait en ses équations, mais pas aux trous noirs. D’après lui, la Nature possédait un mécanisme qui devait empêcher ces anomalies d’apparaitre. Il avait tort puisque les trous noirs existent bel et bien.

D’ailleurs, il faut savoir que cette image ne montre pas du tout un trou noir. Stricto sensu, un trou noir est un point infiniment petit et parfaitement noir de surcroit. Donc personne ne photographiera jamais un véritable trou noir. Mais alors, que montre cette foutue image si ce n’est pas un trou noir? Elle montre les effets causés par un point infiniment dense sur son environnement. Le trou noir est donc bien là, mais c’est un point plus que microscopique tapi au cœur de toute cette sphère noire environnante.

Et cette partie noire dans l’image, ce n’est pas le trou noir? Non. Ce noir n’est même pas un objet, ce n’est que du vide entourant le trou noir qui, je le répète, est infinitésimalement petit. Cette région noire est occasionnée par deux phénomènes créés, évidemment, par la présence d’un trou noir. La partie la plus centrale, environ le tiers du rayon, c’est ce qu’on appelle l’horizon du trou noir, ou l’horizon des événements. Tout ce qui s’approche d’aussi près du centre ne pourra jamais échapper à son attraction gravitationnelle, pas même de la lumière. C’est pourquoi la noirceur de cette sphère est totale et absolue et est d’autant plus grosse que le trou noir central possède une masse importante. La partie noire plus externe, on l’appelle, à tort, l’ombre ou l’ombrage du trou noir. On ne voit pas de démarcation entre les deux zones noires. Je dis «à tort» puisqu’un point infiniment petit ne peut faire qu’une ombre infiniment petite. On aurait été plus avisé d’appeler cette zone «la démarcation» du trou noir.

Le halo orange autour de la zone noire est son disque d’accrétion. Un trou noir en rotation aplatit sous forme de disque toute masse gazeuse ou solide qui a eu le malheur de trop s’en rapprocher. Il avalera cette matière un peu à la fois, faisant grossir sa masse et la surface de la sphère noire inconsistante l’entourant.

Vous vous dites peut-être que c’est une analyse digne du Corbot. En précisant certains faits, je semble vouloir dégonfler à tout prix l’importance du succès. Non, je le ramène simplement là où il doit se situer dans l’échelle des événements marquants. Ce cliché ne méritait pas les éloges dithyrambiques du genre: «Il y a eu un monde avant cette image et il y en a un autre après».

Holà! Wo les moteurs! Calmez-leur le pompon à cette équipe ou à la meute de journalistes en quête de la primeur du siècle. Le seul véritable grand succès de l’EHT est d’avoir réalisé un interféromètre des dimensions de notre planète possédant la résolution et la sensibilité nécessaires pour débusquer cet objet céleste. Elle n’a pas inventé l’interférométrie non plus, elle a simplement amélioré ses capacités par des techniques innovantes. C’est d’abord et avant tout un succès purement technique, pas scientifique. Je ne lui enlève aucune valeur, mais je refuse qu’elle s’arroge ou qu’on lui attribue la paternité de la première preuve de l’existence d’un trou noir, vraie image, mais fausse preuve de surcroit.

Bon, ça vous explique peut-être pourquoi j’ai tant attendu avant de vous faire part de mon opinion. J’ignorais, évidemment, comment les journalistes traiteraient le sujet, même si je m’en doutais un peu. J’ai lu et entendu beaucoup de bons articles et reportages. J’ai également été témoin de bien des stupidités. Faut croire qu’elles viennent comme les chaussures, toujours en paires, les uns sans les autres.

Je croyais que l’équipe dévoilerait tout d’abord une image de Sgr A*, le trou noir formant le cœur de notre propre galaxie, beaucoup plus petit que celui de M 87, mais autrement plus près de nous. Cela viendra probablement bientôt. L’image qu’elle a préféré montrer s’avérait probablement plus nette que celle de Sgr A* et pour une première, l’équipe a choisi la plus impressionnante des deux.

L’EHT continue ses travaux et espère encore augmenter la qualité de ses images. Le trop attendu télescope spatial James Webb viendra changer la donne lorsqu’il daignera enfin flotter dans l’espace bien loin de la Terre. La résolution de l’interféromètre s’améliorera d’un facteur aussi important que celui de l’EHT sur ses prédécesseurs. Et là, peut-être, commencerons-nous à réaliser de véritables percées scientifiques en ce qui concerne la frontière actuelle de nos connaissances sur la physique des trous noirs.

Le trou noir s’en vient !

Titre alarmiste, je sais. J’aurais dû titrer «L’image du trou noir s’en vient». Voilà à peine plus d’une semaine, j’écrivais un article dans lequel je cassais du sucre sur le dos de l’équipe de l’EHT pour avoir promis l’image réelle d’un trou noir en 2017, puis en 2018, et ensuite pour avoir gardé le silence depuis près de 9 mois.

Vous pourriez croire que mon article de la semaine passée était «arrangé avec le gars des vues» (expression chère à mon père lorsque la fin d’un film tombait un peu trop bien, afin que le bon gars puisse toujours gagner, sans égard à l’improbabilité des événements). Qui sait si mon article était véritablement dû à la chance pure, à une probabilité réaliste ou si j’ai profité d’informations non publiques?

event-horizon-telescope

Dans moins de deux jours, l’équipe de l’EHT a convié la presse internationale à une annonce exceptionnelle. Ça ne prend pas la tête à Papineau (expression québécoise consacrée) pour comprendre ce qu’ils veulent nous révéler. Ils vont nous montrer une image du trou noir qui se terre au cœur de notre Galaxie, le fameux Sgr A*. Tout le suspens ne se situe pas à ce niveau, mais ce à quoi l’image du trou noir ressemblera. Bien des gens ont misé sur le fait qu’on ne verra rien de semblable aux belles simulations numériques et je suis pas mal en accord avec ceux-ci.

Mon scepticisme ne se situe pas au niveau de l’existence du monstre galactique situé en plein cœur de la Voie lactée, je suis pas mal certain qu’il existe réellement. Je me questionne sur son apparence, sur ce que révèlera l’image prise de lui.

Supermassive black hole with torn-apart star (artist’s impress

Noir. Le trou noir sera noir, me direz-vous. Ce serait plutôt logique qu’un trou noir réputé pour ne rien recracher de ce qui a traversé son «horizon des événements», lumière incluse, paraisse noir. Et pourtant, un trou noir de cette masse, 4 millions de Soleils, qui bouffe des nappes de gaz ayant eu le malheur de s’aventurer trop près, risque de nous surprendre.

Tout d’abord, on en sait très peu sur sa vitesse de rotation. Comme tout ce qui se trouve dans l’Univers, ce trou noir tourne sur lui-même. Son environnement immédiat est affecté par cette vitesse de rotation et le résultat pourrait nous surprendre.8300758-3x2-700x467

Il faut savoir que cette image n’est pas un instantané, mais un montage très complexe de données diverses prises par tout un tas de télescopes différents, à de moments différents, à des longueurs d’ondes différentes, couplés en interféromètres simples ou multiples.

Ensuite, j’ai toujours douté de l’exactitude des représentations théoriques des effets relativistes. Quelque chose me dit que la vraie vie fera apparaitre une complexité bien plus grande et donc un trou noir bien moins évident à décortiquer et à analyser.

6848274_44f7c67a15bc4925d23231d69364fab11b3928b4_1000x625

Et enfin, même avec tout le respect qu’on doit à ce cher Einstein pour ses équations qui ont révélé la potentielle existence de ces monstres galactiques aux couleurs du Corbot, les trous noirs fricotent aussi bien du côté relativiste de la physique que du côté quantique et c’est là tout son intérêt. Cet objet unique en son genre réussit à exister en poussant les deux théories antagonistes dans leurs derniers retranchements.

Exprimé autrement, le trou noir établit un pont qui n’existe pas actuellement entre nos deux théories et seulement pour cette raison, l’image qu’on s’attend de lui ne peut pas parfaitement lui ressembler.

MIT-Blackhole-Jet_0

Dans moins de deux jours, on en saura un peu plus sur Sgr A*, mais il faut également s’attendre à ce que nous nous forgions tout un tas de nouvelles questions à son sujet. C’est ainsi que progresse la science, par théories et par preuves observationnelles, et on recommence sans jamais voir la fin.

Si l’équipe de l’EHT a réussi un petit miracle et qu’elle nous dévoile une image à la hauteur des attentes, on le saura assez rapidement. Si elle est seulement parvenue à obtenir un résultat duquel aucune conclusion ne peut être tirée et ainsi à renvoyer la balle vers une autre expérience encore plus ambitieuse, on le saura aussi.

Soyez toutefois certain que je ne manquerai pas l’occasion de commenter le contenu de cette conférence de presse dès que j’aurai le temps de l’analyser suffisamment pour écrire quelque chose de personnel et, espérons-le, intelligent, à son sujet.

Verra-t-on un trou noir… un jour ?

Les images dans cet article sont des vues d’artistes ou des images de synthèse

En 2018, j’ai écrit une série d’articles (1 ; 2 ; 3 ; 4) sur l’éventualité d’admirer pour la première fois l’image réelle d’un trou noir avant la fin de cette année-là. À l’évidence, ceux qui avaient pris ce pari, l’équipe de l’EHT (Event Horizon Telescope), ont péché par un trop grand optimisme.

WIRECENTER

Plus de trois mois après leur seconde échéance, aucune nouvelle n’a encore filtré sur leur site web, la dernière mise à jour remontant au 8 août 2018. En octobre 2018, la revue universetoday.com abordait ce sujet et rappelait à leurs lecteurs que rien n’avait été annoncé par l’équipe de l’EHT après l’échéance d’avril 2017.

Je ne veux pas discuter de leurs difficultés techniques, des temps réduits sur les télescopes et de tous les problèmes qu’ils ont dû affronter et qui continuent de jalonner leurs travaux pour composer cette fameuse image. Personne ne met en doute les immenses défis qu’a à relever l’équipe de l’EHT pour traiter les données accumulées en 2017.

giphy

Je veux juste parler de cette tendance de plus en plus répandue à vendre la peau de l’ours avant de l’avoir tué, à promettre sans sérieusement évaluer l’ampleur réelle du défi, à titiller l’intérêt des gens pour ensuite se rendre compte que ça ne pourra pas se faire dans les temps, à pérorer plutôt que penser.

Je ne suis pas contre l’enthousiasme, bien au contraire, mais je suis également très attaché au sérieux d’une démarche d’engagement. Promettre de réaliser quelque chose et s’en tenir ne semble plus représenter aucune importance, alors on promet sans compter puisque les conséquences de rater la cible semblent nulles.

bhlens_riazuelo_big

J’aurais pu choisir une autre victime que l’équipe de l’EHT, ce ne sont pas les exemples qui manquent. Je l’ai choisie parce que le sujet est éminemment important pour la cosmologie et sa théorie dominante, la relativité générale d’Einstein.

Euh, oui, bon! En cherchant bien, on peut trouver quelques sujets plus importants dans la vie, j’en conviens. Qu’importe, car tout ce qui a semblé trop éloigné du quotidien pour avoir la moindre importance dans nos vies a fini par l’envahir d’aplomb! Et la relativité générale n’y fait pas exception. Si vous l’ignoriez, à chaque utilisation d’une appli de positionnement par GPS, la relativité générale vient à la rescousse pour assurer la précision des calculs. Sans elle, les positions dériveraient de plusieurs mètres par jour.

lin_2048.png

Ce serait donc une erreur de penser que la cosmologie n’a d’intérêt que pour ceux qui l’étudient. La cosmologie est près de nous et même en nous. Le destin de l’Univers dépend de tout ce qu’il contient, nous y compris.

Les trous noirs pavent la voie vers une compréhension inédite de notre Monde, car ils relient la physique relativiste et la physique quantique. Ce sont des objets très simples et pourtant prodigieux.

Vide_nrj

Cette fameuse et toujours absente première image véritable du trou noir supermassif réfugié au cœur de notre Galaxie apporterait la preuve définitive que ce type d’aberration naturelle existe bel et bien, et pas seulement dans les livres de physique. En revanche, si l’image diffère de ce que nos simulations numériques nous montrent, nous pourrions mettre la main sur quelque chose d’extrêmement important, un indice d’une nouvelle physique.

Alors, de grâce, chère équipe de l’EHT, cesse de promettre la Lune ou le Trou noir et redouble plutôt d’ardeur au travail! Je déteste écrire des titres d’articles à la forme interrogative et ensuite devoir répondre «non». «Verra-t-on un trou noir en 2018?» C’était le titre de ma série d’articles concernant ton travail en cours… alors, cours!

Réponse à une énigme sur le temps

Ceci se veut la suite du récent article que j’ai consacré à une idée un peu folle, mais pleine de promesses, une idée sur le temps, il serait tridimensionnel.

Penser que le temps est tridimensionnel est source de conséquences que je ne m’attendais pas à priori. Plus j’y pense et plus je trouve cette idée remplie de… solutions à des problèmes que nous pose le temps dans la façon actuelle de le modéliser.

voyage-dans-le-temps

L’une des plus grandes énigmes scientifiques concernant le temps tel que pensé dans nos théories physiques actuelles concerne la flèche temporelle. Actuellement, rien n’interdit le temps de reculer, du moins en équations. Pourtant, ce faisant, l’effet précèderait la cause et c’est la raison pour laquelle les scientifiques pensent que nos théories concernant le temps doivent comprendre un mécanisme qui interdirait ces retours dans le passé.

3762869313_b23339f24d_b.jpg

Le troisième axe du temps, l’axe qui mesure « le temps qui passe », qui s’allonge au fil du temps, expliquerait pourquoi celui-ci n’est pas réversible, que le passé nous est inaccessible. En s’allongeant constamment, ce vecteur dicterait une seule direction à la flèche du temps. Les théories actuelles dépourvues de cet axe n’ont pas cette contrainte et ne récusent pas l’inversion du temps, ce qui donnerait la possibilité de voyager dans le passé. Pourtant, cela ne s’est jamais vu.

J’ai déjà expliqué dans cet article pourquoi les voyages temporels dans le passé n’existent pas. Ce n’est pas une démonstration, mais une solide preuve observationnelle. Le troisième axe que je définis au temps élimine pour toujours cette dérangeante possibilité, celle que la causalité puisse être prise en défaut. Avec cet axe du temps qui passe, plus moyen de retourner dans le passé pour tuer ses aïeux. Les paradoxes temporels ne peuvent plus exister et la cause précèdera toujours l’effet. Croyez-moi, c’est une excellente chose, même si elle vient de saborder l’idée maitresse de bon nombre de films et de séries télé.

doctorwho_2005.jpg

Voilà, l’idée du temps tridimensionnel résout un problème majeur de la physique. Il suffit maintenant de trouver un moyen de prouver que j’ai raison. Mais une fois encore, je devrai vous faire patienter, car mes idées doivent prendre le temps de se mettre en place.

Si je parviens enfin à dormir!