Savoirs anciens — mesurer avec une roue

Contrairement à la croyance populaire éperonnée par des déclarations malheureuses dans de mauvais documentaires scientifiques, les Égyptiens connaissaient parfaitement la roue. Lire mon article à ce sujet.

DSC_0570

Cet article explique comment je peux améliorer la précision de la longueur de la corde utilisée pour tracer la base de la pyramide de Khéops à partir d’une roue. Vous pouvez cliquer ici pour lire le premier article concernant le traçage de cette base de 440 coudées royales égyptiennes de côté à partir d’outils des plus rudimentaires.

Une roue simple permet d’améliorer la précision d’une mesure de longueur par rapport à une courte règle, comme la coudée royale étalon, un bout de bois d’une cinquantaine de centimètres de long.

cubito-unita-di-misura

Dans l’exemple utilisé dans l’article traitant de la base de la pyramide où je devais mesurer une corde de 1320 coudées à l’aide d’un étalon d’une longueur d’une seule coudée, il est évident qu’après un nombre aussi important de reports de la règle sur la corde, celle-ci devait certainement mesurer quelque chose de bien différent des 1320 coudées requises, et ainsi je m’exposais à servir de tartare aux lions du pharaon. Tenant trop à terminer ma vie ailleurs que dans des estomacs félins, j’ai voulu m’assurer que la corde mesurait le plus précisément possible la longueur requise.

Je ne pouvais pas débarquer au 25e siècle avant notre ère devant Pharaon Khéops avec un appareil de mesure au laser, je devais utiliser les moyens disponibles à cette époque et la roue m’est apparue être l’outil idéal pour affiner la précision des dimensions.

05_5_0.jpg

La façon dont je m’y prends est de reporter la longueur de la coudée royale sur un arc de cercle correspondant à une valeur fractionnaire exacte d’un tour complet de roue afin d’additionner cette longueur étalon au fur et à mesure que je tourne la roue en longeant la corde.

La difficulté consiste à mesurer un périmètre valant le plus précisément possible un multiple exact d’une coudée. Aujourd’hui, on sait que le rapport du périmètre sur le diamètre d’un cercle est π, un nombre irrationnel, et qu’ainsi la quadrature du cercle est impossible. Je me contenterai donc de la technique essais-erreurs pour me rapprocher de plus en plus d’une roue ayant un périmètre valant le plus précisément possible un nombre entier de la coudée.

Roue-Hex-Coudee_1

Toujours en utilisant la coudée étalon fournie par Khoufou, je taille une pierre en forme de roue en lui donnant un périmètre légèrement plus grand que 6 coudées afin de l’abraser par la suite jusqu’à la valeur précise. Pourquoi ai-je choisi de fabriquer une roue dont le périmètre vaudra exactement 6 coudées et pas 5 ou 8 ou un autre multiple? Un cercle divisé en 6 arcs identiques inscrit un hexagone régulier dont chacun de ses côtés vaut exactement le rayon du cercle (figure). Et si je divise 1320 coudées par 6, j’obtiens le nombre entier 220, donc un nombre exact de tours de roue. Ce nombre 220 s’inscrit dans la même structure numérique que 330, 440 et 550, les trois longueurs du triangle rectangle choisi pour tracer la base de la pyramide. Ce sont tous des nombres divisibles par 110.

Je fais rouler ma roue sur la coudée étalon pour m’apercevoir que les 6 arcs de cercle sont légèrement plus longs que la coudée. Je place alors la roue sur un pivot et je l’abrase jusqu’à ce que les 6 arcs de cercle mesurent en tout 6 coudées.

iStock_000006274276Medium.jpg

Muni de cette roue de 6 coudées, je mesure la corde pour la couper à 1320 coudées en calculant le nombre de tours de la roue. Lorsque j’atteins 220 rotations complètes, je coupe la corde à cet endroit précis. Je viens d’augmenter de façon très importante la précision de la longueur de la corde. Je peux maintenant la plier pour y placer les repères à 440, 880 et 330 coudées afin de respecter les mesures requises dans le processus.

La roue devient un moyen plutôt efficace d’accroitre significativement la précision des mesures de longueur en plaçant bout à bout des étalons de mesure sans rajouter ou retrancher des intervalles. Grâce à l’utilisation d’une roue, j’ai prouvé à Pharaon que sa future grande pyramide possédera une base carrée de 440 coudées de tous les côtés.

Dans un prochain article, j’aborderai l’étrange longueur de la coudée royale égyptienne.

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s