Classifications du niveau d’évolution des civilisations

Plusieurs personnes ont défini des niveaux de civilisation permettant de cataloguer leur degré d’évolution. Même moi, je m’y suis mis avec mon échelle Keaq inventée pour les besoins d’une nouvelle que j’ai écrite en 2015.

La plus idiote de ces classifications et malheureusement l’une des plus connues, non ce n’est pas la Keaq, vilain lecteur, c’est la Kardachev, du nom de son inventeur, sûrement un imbuvable camarade soviétique rouge sur la vodka qui en fit la publication lors d’une conférence en 1964, donc avant la crise du pétrole de 1973.

Elle possède seulement trois échelons.

I. La civilisation capte et consomme 100 % de l’énergie de sa planète
II. La civilisation capte et consomme 100 % de l’énergie de son étoile
III. La civilisation capte et consomme 100 % de l’énergie de sa galaxie

 

alien-sphere-dyson_5498763

Construction d’une sphère de Dyson qu’utiliserait une civilisation de niveau II pour capturer l’énergie entière d’une étoile

 

Considérant l’échelle Kardachev, vous les terriens — moi je suis un extraterrestre et je me dissocie totalement de vous tous — vous n’êtes rien, niveau néant, moins mille, dans la fosse des Mariannes, au sommet des tours jumelles du World Trade Center, au même niveau qu’une bique, qu’une lamproie, qu’une éponge, qu’une amibe. Les 4 dernières comparaisons ne sont pas une insulte de ma part, mais une réalité selon la classification Kardachev.

Ouais, comme vous pouvez le voir, l’échelle Kardachev est un peu réductrice pour les populations qui croient valoir quand même un petit quelque chose au-dessus du zéro, comme les humains, genre.

Ma principale critique concernant cette classification est qu’elle possède beaucoup trop peu d’échelons dans son ensemble, ce qui engendre des défauts majeurs.

1. L’absence d’échelons sous le premier niveau
2. Les fossés abyssaux séparant deux échelons
3. La forte improbabilité de l’existence de l’échelon III dans l’Univers
4. Rien ne peut capter la totalité d’une énergie disponible
5. Une civilisation vraiment très avancée dépense peut-être beaucoup moins d’énergie que des civilisations incapables de bien la maitriser et qui la gaspillent, donc sous-évoluées.

Dans le passé, Carl Sagan avait déjà émis des commentaires défavorables à son égard. Plus récemment, le vulgarisateur scientifique Michio Kaku parlait de remplacer l’énergie dépensée par une échelle basée sur l’économie du savoir. Mais là, on ne parle plus du tout de l’échelle de Kardachev. Aussi bien prendre la classification Keaq, tant qu’à faire ! Mais là, j’empiète sur un autre article.

Le coût énergétique pour écrire des bits en mémoire

Ce que je vais vous apprendre vous surprendra peut-être. Je vais donc tenter de l’expliquer le mieux possible. Considérons qu’un bit de valeur zéro correspond à une tension de zéro volt et un bit de valeur 1 correspond à une tension de 5 volts.

Commençons par donner la réponse théorique à la question posée dans le titre. Quelle puissance est nécessaire pour stocker en mémoire une certaine quantité de bits ? La question étant théorique, la réponse est en première approximation.

La puissance dépensée dans cette opération est de zéro watt. Peu importe si on écrit des zéros (0) ou des uns (1), il n’y a aucune dépense énergétique à inscrire des bits en mémoire, peu importe sa valeur. En première approximation, ça va de soi, et voici pourquoi.

Traitons le cas où il faut écrire 1 en mémoire alors que le niveau initial est à 0. Pour ce faire, vous apportez l’énergie du bloc d’alimentation vers la cellule mémoire grâce à un interrupteur électronique que vous actionnez. Une cellule mémoire possède une résistance électrique valant un chiffre astronomique qu’on qualifie d’infini. D’autre part, si la capacitance de l’unité mémoire, sa capacité d’accumuler des électrons et sa capacité d’accumuler un champ magnétique, son inductance, sont toutes les deux nulles, aucun courant ne circulera même si la tension aux bornes de l’unité mémoire deviendra 5 volts, la valeur du potentiel électrique de la source. Pour inscrire un zéro, on court-circuite simplement l’unité mémoire qui amène la valeur du bit à zéro (0).

Mais où est l’astuce ? Où est la consommation d’énergie ? La consommation d’énergie n’est pas dans l’écriture, mais dans la lecture de la valeur inscrite en mémoire. La lecture exige que l’unité mémoire soit en mesure de faire connaitre sa valeur au système de lecture. Pour ce faire, deux solutions existent. Soit l’unité mémoire a suffisamment accumulé d’électrons durant l’écriture et ainsi elle a consommé du courant durant l’écriture. Si on garde l’écriture sans consommation énergétique, l’autre solution c’est l’unité de lecture qui va devoir consommer pour lire efficacement le contenu de l’unité mémoire.

Peu importe les économies de consommation à l’écriture, quelque part dans le processus opérationnel global qui englobe les lectures, le système finira inévitablement par consommer de l’énergie tôt ou tard.

Il existe un autre domaine d’expertise où la lecture, la détection en d’autres termes, joue aux rabat-joies et c’est en physique quantique. Mais j’aborderai ce sujet dans un autre article.