C’est la faute aux ondes gravitationnelles

Il existe une nouvelle mode depuis quelque temps, celle de placer les mots «ondes gravitationnelles» partout où l’on voit des rides ou des vagues. Les nuages forment des moutons parallèles, c’est l’effet des ondes gravitationnelles. Des rides dans des dunes, les ondes gravitationnelles. Des rides sur l’eau, les ondes gravitationnelles.

onde_gravit_spl_cosmos_72dpi_recadree

Les ondes gravitationnelles ne sont pas visibles à notre échelle et ne laissent pas de traces apparentes de leur passage. Elles déforment l’espace d’une manière microscopique lorsqu’elles se propagent à la vitesse de la lumière. Depuis peu, on les détecte en faisant voyager un rayon laser entre des miroirs distants de plusieurs dizaines de kilomètres et l’on réussit à peine à mesurer une variation infinitésimale de cette longueur. Si elles faisaient des vagues dans des dunes, soyez certain que nous serions en train d’être pulvérisés par deux trous noirs en coalescence dans la banlieue proche de la Terre.

Alors, non, les ondes gravitationnelles ne font pas rider les dunes ni ne dessinent des rouleaux dans les nuages. De bien grandes bêtises proférées par des gens ignorant tout de ce phénomène qui fut prédit par Albert Einstein un an après avoir complété sa théorie de la relativité générale. Il publia un article à ce sujet dans une revue scientifique en 1916, mais il a quand même toujours fortement douté de leur existence, changeant plusieurs fois d’idée par la suite. Une fois de plus, son instinct ne l’avait pas trompé.

images-5

Les ondes gravitationnelles ne ressemblent pas aux ondes électromagnétiques connues qui utilisent les photons pour transporter l’énergie. Ce sont donc des ondes de gravitation qui déforment l’espace-temps lorsqu’elles irradient à partir de leur lieu d’origine.

Il est raisonnable de penser qu’une particule joue le même rôle que le photon, dans leur propagation, ce serait le graviton. Lui aussi se déplacerait à la même vitesse c que son homologue électromagnétique. Mais si les ondes gravitationnelles ont été récemment détectées et confirmées, il n’en fut pas de même pour le graviton qui reste une particule hypothétique.

Les déformations spatiales exigent de l’énergie, on ne plie pas l’espace gratuitement. Ainsi, deux trous noirs qui se tournent autour avant de fusionner perdront une partie de leur masse transportée sous forme d’énergie par les ondes gravitationnelles.

Ligo_Virgo_1

La première détection d’ondes gravitationnelles a eu lieu le 14 septembre 2015 par les trois détecteurs LIGO et les scientifiques ont pu le confirmer le 11 février 2016, un siècle après la parution de l’article d’Einstein. Mais ce qui a rendu cette détection si spectaculaire est le fait d’avoir situé dans l’espace le lieu d’où provenait la production de ces ondes.

Couplée à d’autres observations résalisées par des télescopes traditionnels détectant des effets électromagnétiques complémentaires, ensemble, elles ont permis de découvrir la fusion de deux trous noirs de 36 et 29 masses solaires survenue à une distance de 1,3 milliard d’années-lumière. Il en est résulté un trou noir de 62 masses solaires. Ils ont donc perdu 5 % de leur masse, l’équivalent de trois fois la masse de notre Soleil, transformée en énergie qui a déformé l’espace jusqu’à nous. À leur arrivée sur Terre, le train d’ondes a fait osciller nos dimensions spatiales de seulement quelques zeptomètres (10-21 m). C’est tout dire sur la difficulté de mesurer ces variations infinitésimales de compression et dilatation d’espace.

News-Feb11_LIGO-image2

Depuis, d’autres détections ont eu lieu, confirmant la première tout en donnant du pep à d’autres détecteurs en cours de construction. Bientôt, nous posséderons tout un réseau de détecteurs capables de bien mesurer et localiser les sources de ces émissions.

Mais soyez assuré et rassuré, aucun phénomène visible n’est causé par le passage de ces vagues d’espace-temps et il vous est impossible de les sentir.

JWST, la seule constante : les reports

En 2013, je corrigeais un article sur Wikipédia en lien avec le lancement du futur télescope spatial James Webb. Prévu pour 2014, il venait d’être repoussé en 2015. Puis ce fut 2018, 2020 et maintenant la NASA le planifie pour le 30 mars 2021. Son budget a déjà dépassé les 8,8 milliards USD et il reste toujours cloué au sol.

Quand un projet s’enlise, le résultat final risque souvent de décevoir. Voici quelques écueils probables.

jwst-april2017

Lorsque l’instrument d’observation scientifique deviendra disponible, la technologie aura tellement évolué qu’il faudrait le recommencer.

Si d’autres reports surviennent, la fusée Ariane V qui devait l’amener dans l’espace aura probablement pris sa retraite.

Sa remplaçante ratera peut-être sa mise en orbite au point de Lagrange L2 du système Terre-Soleil.

Un défaut majeur causé par des changements mal contrôlés de dernière minute le condamnera peut-être à la stérilité.

Le télescope exécutera plus de manœuvres de correction de position que prévu réduisant d’autant sa durée de vie active.

JWST_telescope_post_coc-test.jpg

Contrairement à Hubble, son prédécesseur toujours opérationnel qui pouvait être réparé depuis l’espace, le JWST restera inatteignable à cause de son éloignement de la Terre (1,5 million de km), ce qui le rendra inutile en cas de panne quelconque, y compris d’ergol (carburant).

Scientifiquement parlant, chaque report du lancement du JWST s’avère être une catastrophe. Tous nos instruments astronomiques fonctionnent en partenariat avec les besoins des scientifiques. Les plans et les protocoles de recherche sont conçus en fonction des outils actuellement disponibles, mais aussi ceux à venir.

La complémentarité des télescopes à notre disposition est essentielle pour le succès de beaucoup d’études et lorsqu’un seul d’entre eux retarde sa mise en activité, il en résulte l’abandon de centaines de travaux de recherche majeurs.

jwst_new1.jpg

Pour ceux qui l’ignorent, contrairement à son prédécesseur, le télescope JWST ne captera pas tous les photons des longueurs d’onde visibles. Il trouvera sa niche à partir de l’orange, du rouge et jusque dans l’infrarouge proche et moyen. Sa sensibilité, par contre, sera des milliers de fois meilleure que les plus performants appareils actuels.

‘Oumuamua et la recherche d’une vérité

L’analyse des données obtenues lors de la visite de cet objet extrasolaire, aussi nommé 2017 UI, repéré le 19 octobre 2017 par le télescope Pan-STARRS1 situé à Hawaï a fait supposer à une équipe d’astronomes dirigée par Marco Micheli de l’Agence spatiale européenne (ESA) que ce bolide devait être une comète.

B2CA764C-1A9F-4485-BDE29E6545E2CFC8.jpg

Pourquoi? À cause que sa trajectoire aurait été légèrement modifiée lors de son passage au plus près du Soleil, leur laissant penser qu’un dégazage propre aux comètes aurait pu influencer son hyperbole.

Cependant, aucune perte de la sorte n’a été constatée. Cette hypothèse n’est qu’une spéculation et les calculs de cette équipe devront être contre-vérifiés. S’ils s’avèrent, les autres causes naturelles possibles des perturbations de la trajectoire d’Oumuamua restent des influences gravitationnelles non prises en considération. Il se pourrait également que sa forme très particulière, très éloignée d’une sphère puisque cet objet céleste ressemblerait à un cigare, ait causé ce comportement déviant par rapport à des calculs basés sur une rotondité de l’astre.

Oumuamua-pleiades

L’autre hypothèse résulte d’un événement non naturel. Le bolide aurait dévié de sa trajectoire par pilotage, mais là, on tombe dans un domaine d’activités moins prisé des astronomes. De toute façon, cette déviation serait beaucoup trop légère pour le laisser penser de façon claire.

310px-Comet_20171025-16_gif

Personnellement, j’opte pour des causes multiples puisque la simplicité est une invention de nature humaine vouée à rasséréner en tranchant grossièrement dans la vérité afin de générer des vainqueurs et des perdants. J’exclus toutefois le pilotage de mes hypothèses, mais sait-on jamais? On envoie bien des sondes au-delà de la sphère d’influence de notre Soleil. La curiosité n’est pas l’apanage de l’humain.

cover-r4x3w1000-5b363359d656d-oumumuaaa

AT2018cow

Vous vous en doutez probablement, ce genre d’appellation fait penser à un objet céleste et c’en est effectivement un. À l’instar de beaucoup de produits de notre Univers, nous les cataloguons et ainsi ils prennent des désignations différentes. Celui-ci est également connu sous les vocables ATLAS18qqn, SN 2018cow, ou plus simplement «The Cow».

Possible_AT2018cow_244.000927647_+22.2680094118_20180624.png

Ce serait peut-être une supernova, une étoile variable cataclysmique (CV), une source de sursauts de rayons gamma (SRG ou GRB) une source d’ondes gravitationnelles (GW), mais d’un genre plutôt étrange qui se moque de nos connaissances actuelles en la matière. Située à 200 millions d’années-lumière de nous, cette possible supernova brille au moins dix fois plus que les supernovæ normales. Elle a été découverte le 16 juin dernier par l’observatoire Haleakalā à Hawaï.

1200px-Haleakala_telescopes

Le lendemain, pas moins de 24 télescopes majeurs se sont braqués sur cette bizarrerie céleste, un record de concurrence répertorié par le site The Astronomer’s Telegram (astronomerstelegram.org).

Son statut de supernova est loin de faire l’unanimité puisque cette étoile est trop brillante et trop rapide pour la désintégration du nickel 56Ni caractérisant les supernovæ de type Ia, de là tout l’intérêt de trouver et de comprendre quelque chose qui repoussera les limites de nos connaissances cosmiques.

Cow1_0

Les observations se poursuivent et jusqu’à ce que l’on découvre précisément ce qu’elle est, on peut toujours s’exclamer «Ah la vache!»

Vache_Etoiles.png

Comète

L’origine grecque komê du mot comète signifie « chevelure ». C’est plutôt bien imagé. Toutefois, cette représentation féminine de la comète s’est accentuée et on a associé ces apparitions élégantes à de magnifiques princesses.

tmb_176873_2859

Dans beaucoup de cultures, les comètes ont été liées à l’avènement de catastrophes naturelles, à des annonces de guerres sanglantes perdues ou au décès de rois. On vit le malheur dans la venue dans les cieux de comètes et un côté sombre aux jolies princesses. Certains ont persisté à idéaliser les blondes créatures (les pauvres !) et ont plutôt opté pour des sorcières ayant la main mise sur les beautés… fatales, car la mort et la souffrance suivaient toujours leurs apparitions.

Comet-Hale-Bopp-nefertaris-crown

Évidemment, en ces temps obscurs où les prêtres se cherchaient toutes les raisons possibles, bonnes ou mauvaises, pour garder le peuple et surtout les rois en laisse, ils omettaient volontiers de faire remarquer toutes les catastrophes non prédites par ces étoiles qui fument. Quant aux malheurs, ils en trouvaient toujours un à leur associer puisque les malédictions pullulaient à ces époques et la vie des rois se déclinait dans la brièveté. Leur réputation sulfureuse a été validée aussi bien en Orient qu’en Europe qu’aux Amériques précolombiennes. Vers les années 1000, les Chinois les répertoriaient en les classant par catégories.

comete-dai-4e-acn

En 1696, William Whiston attribua le grand Déluge au passage d’une comète à proximité de la Terre. Avant cela, la mort de Jules César aurait été annoncée par un astre chevelu.

Représenter ces serpents de feu dans la peinture ou dans la gravure se fit abondamment et son symbolisme demeura puissant pendant très longtemps. Aujourd’hui encore, les comètes fascinent certains et en inquiètent bien d’autres.

CometDonati.jpg

Ces corps mi-poussiéreux mi-glacés ont été éjectés d’un réservoir en contenant des milliards appelé nuage d’Oort aux confins de notre système solaire. Des collisions ou des perturbations transforment leur orbite en une grande ellipse venant frôler le Soleil. Une supernova éclatant près de nous pourrait causer des pressions suffisamment importantes pour engendrer des pluies de comètes comme il s’en est produit durant la genèse de la Terre il y a environ 4 milliards d’années. La Lune montre encore aujourd’hui les stigmates d’un bombardement intensif survenu à cette époque lointaine. L’eau de nos océans serait en partie due aux chutes de comètes sur Terre.

Souvent perçues avec deux queues de couleurs et de directions distinctes, elles dépendent de l’éjection de poussières neutres et d’ions. Il en existe une troisième, invisible et plus longue que les précédentes, formée d’hydrogène. Il est parfois possible de voir une anti-queue qui semble se profiler en direction du Soleil plutôt que l’inverse.

Comet_Hale-Bopp_1995O1 (1)-5a53.jpeg

Les comètes gardent toujours une certaine part de mystère. Leur apparition ponctuelle même en plein jour et durant des semaines permet de comprendre pourquoi elles ont été si symbolisées et si craintes.

Galaxies satellites de la Voie lactée

Peu de gens savent que la Voie lactée a des galaxies qui lui tournent autour. Certains connaissent les deux nuages de Magellan, le grand et le petit. Encore moins nombreux sont ceux qui connaissent la galaxie du Sagittaire. Alors je ne chercherai pas ceux qui savent qu’à ce jour, on a recensé une nuée de 55 galaxies se pavanant autour de notre jolie Galaxie afin d’avoir l’honneur un jour… de se faire bouffer par elle.

gaia_s_first_sky_map_annotated_article_mob.png

Ne soyez pas triste, la Voie lactée est devenue aussi vaste et belle grâce à ce mécanisme d’accrétion. Il en fut toujours ainsi et un jour on fera de même avec elle. Quoique ce sera une union plutôt qu’un repas puisque nous fusionnerons avec notre voisine, la galaxie d’Andromède, la seule galaxie primaire autre que notre Voie lactée à être visible à l’œil nu malgré les 2,55 millions d’années-lumière qui nous en sépare.

andromede-galaxie-m31

Pour certaines des galaxies satellites, elles constituent probablement les restes d’un festin passé alors qu’autrefois, on les croyait primordiales, c’est-à-dire les premiers regroupements d’étoiles de notre Univers. On peut croire en la possibilité des deux types, des mariées et de vieilles louves solitaires capturées puis maintenues prisonnières par la force gravitationnelle de notre grande Galaxie.

Galaxies_du_Groupe_local.svg

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Verra-t-on un trou noir en 2018 ? (3)

J’ai entendu votre question et je vous réponds d’entrée de jeu, la réponse est non! Il n’existe aucune photo de l’horizon d’un trou noir nulle part sur Terre. Toutes sont des illustrations d’artiste ou des dessins créés par ordinateur à partir des formules mathématiques tirées de la théorie de la relativité générale d’Einstein. Par contre, ça pourrait changer dès cette année.

black-hole

Poursuivons maintenant notre aventure entreprise avant-hier et hier en présentant quelques concepts astronomiques. Si on veut obtenir une photo d’un horizon d’un trou noir, il faut quand même comprendre comment on pourrait y arriver. Vous verrez qu’il ne suffit pas de relier un iPhone à un télescope.

Tout d’abord, différencions deux concepts des instruments d’optique, leur sensibilité et leur résolution.

La sensibilité dépend dans un premier temps de la qualité du détecteur à transformer les photons en signal électrique. Attachez une patate à un télescope, vous n’obtiendrez pas la photo d’un champ de patate. Ensuite, il y a le nombre de photons qui seront amenés au détecteur. Cette quantité dépend de la taille du télescope, ce qu’on appelle la surface collectrice du miroir principal. Enfin, pour augmenter le nombre de photons, le télescope visera le même point du ciel le plus longtemps possible.

Disque_d'Airy_03

La résolution définit la capacité de l’instrument à différencier deux éléments l’un de l’autre. Elle dépend du nombre de pixels du détecteur, de la fréquence à détecter et aussi de la parallaxe.

La parallaxe est l’angle maximal formé par deux points de la surface collectrice. Plus le diamètre du télescope est grand, plus l’angle sera important et plus son pouvoir de résolution sera important. Un grand miroir aura donc deux avantages. Il collectera plus de photons et il aura un pouvoir de résolution plus important.

Toutefois, aucun télescope terrestre ou spatial n’a la résolution nécessaire pour voir les détails des effets optiques occasionnés par les trous noirs connus, même ceux du petit monstre supermassif caché au centre de notre Galaxie. Peut-on attendre la mise en service en 2025 du télescope E-ELT de 39 mètres de diamètre, mais là encore, sa résolution serait beaucoup trop faible.

Artist’s impression of the European Extremely Large Telescope

Qu’à cela ne tienne! Les astronomes sont des petits futés et ils ont pris la définition de la résolution d’un instrument optique au pied de la lettre. S’il faut augmenter la parallaxe pour améliorer le pouvoir de résolution, il suffit de prendre deux télescopes au lieu d’un seul et de leur faire regarder le même objet en même temps afin de créer un télescope virtuel de meilleure résolution.

Différentes solutions ont été mises de l’avant, dont certaines plus simples, d’autres plus complexes. La plus simple est le concept des jumelles, c’est le cas du BLT (Binary Large Telescope).   

1200px-LargeBinoTelescope_NASA

Pour des télescopes indépendants, il faut trouver le moyen de traiter les signaux reçus par les deux engins pour les faire correspondre exactement dans le temps. On parle alors d’interférométrie. Une fois encore, deux solutions existent. Les interféromètres couplés localement, comme le VLT. Possédant 4 gros et 4 petits télescopes, il est possible de simuler un télescope de 200 mètres de diamètre.

eso0111f

Mais encore là, c’est beaucoup trop peu pour espérer voir l’horizon d’un trou noir. Ça prendrait un télescope au moins des dimensions… de… de… la Terre. Et c’est là qu’ils ont créé le EHT (Event Horizon Telescope). Ce n’est pas un nouveau télescope, mais un protocole d’utilisation d’un réseau de neuf télescopes existants répartis un peu partout sur la planète, y compris au Groenland et en Antarctique. Son diamètre virtuel définissant sa capacité de résolution est de près de 15000 km.

w453-81281-ehtimagehighres

Une première session photo s’est déroulée en avril 2017 et les résultats sont à l’étape du traitement qui pourrait se terminer d’ici la fin de l’année 2018. Ce sont des pétaoctets de données à traiter avec des difficultés énormes, d’où le délai entre la prise photo et le résultat final.

Demain, quelques questions – réponses sur le sujet.

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Verra-t-on un trou noir en 2018 ? (1)

Est-ce que nous pourrons voir un trou noir très bientôt ?

Évidemment, la question aurait de quoi faire rire. Puisque le fond du cosmos est noir, regarder un trou noir sur un fond noir, c’est comme observer un corbeau dans un placard. Pourtant, il est possible de voir ce à quoi un trou noir ressemble en regardant ses effets sur son environnement.

Afin de répondre à la question initiale, j’aurai besoin d’expliquer succinctement différents concepts que je distribuerai dans des articles distincts.

Le premier article sera donc consacré à rappeler comment se forme un trou noir afin de comprendre sa nature.

Une étoile est un délicat équilibre entre deux forces antagonistes. Tout d’abord, une étoile, c’est une bombe nucléaire. La pression engendrée par la fusion nucléaire tend donc à disperser les constituants de l’étoile comme le fait n’importe quelle bombe nucléaire. Toutefois, puisqu’une étoile est aussi un agrégat important de matière, la gravitation retient la matière éjectable en la concentrant au centre de l’astre, ce qui maintient l’étoile en une sphère plutôt stable.

Une étoile est donc une sorte de balance à ressort qui retient le poids déposé sur son plateau en le repoussant jusqu’à un équilibre entre les deux.

resize.jpeg

Formation d’une étoile à neutrons

Cependant, le carburant nucléaire venant en fin de compte à manquer — et cela arrive d’autant plus rapidement que l’étoile est obèse — la pression des explosions nucléaires ne suffit plus à contrebalancer la force gravitationnelle qui comprime l’étoile. De ce combat singulier perdu d’avance, l’étoile finira par imploser sous son propre poids. Si elle possède suffisamment de matière, l’implosion réussira à vaincre les autres forces répulsives possibles dans la matière. Les électrons deviendront incapables de se repousser mutuellement (principe d’exclusion de Pauli) et finiront par s’écraser sur les noyaux des atomes. Ce faisant, les électrons fusionneront avec les protons du noyau pour former des neutrons. On obtient ainsi une étoile d’une densité extrême dont son cœur est entièrement composé de neutrons. Tous ces neutrons sont comprimés dans une sphère de 20 à 40 km de diamètre pour l’équivalent en poids d’une étoile de 1,4 à 3,2 fois la masse de notre Soleil. C’est dire comment la densité de la matière est importante ! Mais une étoile à neutrons n’est pas encore un trou noir.

Trop de matière pour résister

Si l’étoile à neutrons possède une masse supérieure à 3,2 fois celle de notre Soleil, ces particules neutres formant une espèce de noyau atomique géant seront elles aussi incapables de résister à la force gravitationnelle. Les quarks composant les neutrons atteindront leur limite de résistance et flancheront à leur tour.

8230235118_ae689ff1db_k

Formation d’un trou noir stellaire

À cette étape, il n’existe plus aucun autre mécanisme pouvant résister à la force gravitationnelle. La matière atteint alors sa limite d’existence et s’écrase en se concentrant un point infiniment petit. Le résultat est une singularité des équations de la relativité générale d’Einstein. Un point infiniment petit concentrant une masse de densité infiniment grande. Un trou noir est né.

Ouais, la physique n’aime pas trop les infinis et ces deux infinis du trou noir signifient qu’on a un « trou » dans notre théorie. Un trou noir de connaissances liées aux trous noirs qu’on ne parvient pas à éclaircir. Ironique, n’est-ce pas ? Cette formation des trous noirs se rapporte aux trous noirs d’origine stellaire, c’est-à-dire qu’une étoile est à l’origine du trou noir. Il atteint des masses maximales aux alentours de 14 fois celle de notre Soleil.

messier_106_multifrequence_hubble_galex_chandra_by_damylion-d7qoy0k

Trou noir galactique (supermassif)

Il existe aussi des trous noirs galactiques. Ce sont des trous noirs tapis au cœur de la plupart des galaxies. Leur origine est controversée, mais il est certain qu’ils ont cru en avalant de la matière environnante et par coalescence avec d’autres trous noirs. Le record est détenu par le trou noir supermassif de la galaxie NGC 4889 qui aurait un petit 21 milliards de fois la masse de notre soleil !

La Voie lactée, notre Galaxie, cache également un trou noir supermassif en son sein. Il deviendra important pour la suite de cet article. Toutefois, sa dimension reste modeste. Il a la taille plutôt fine à comparer à bien d’autres trous noirs en ne pesant que 4 millions de fois la masse de notre Soleil !

Dans le prochain article, j’expliquerai simplement ce qu’on appelle l’horizon des événements d’un trou noir. Cette notion est essentielle pour comprendre comment on peut observer un trou noir.

Je vous donne rendez-vous demain pour la suite de ce passionnant feuilleton et vous encourage entretemps à poser vos questions sous forme de commentaire.

À bientôt.

Voici pourquoi nous sommes dirigés par des extraterrestres

Je vous mets immédiatement au parfum, je ne suis pas un adepte du conspirationnisme. Et même si la couette de Trump peut nous faire penser qu’il est issu d’une race extraterrestre, ce n’est pas ce genre de direction extraterrestre dont je veux parler, mais plutôt une direction de l’ombre, peu importe la manière dont cette influence serait exercée. Pour mettre en lumière ma pensée, voici un conte fictif, mais qui pourrait bien être survenu dans notre réalité.

16 juillet 1945, la première bombe nucléaire explose au Nouveau-Mexique. Elle émet une double bouffée de rayons gamma susceptibles d’être détectés par des peuples situés quelque part dans notre Galaxie et reconnus comme ayant été émis par une arme à fission nucléaire.

maxresdefault

Ce signal ne trompe pas les astronomes extraterrestres appelés à définir la nature de ce sursaut de rayons gamma. C’est de toute évidence le souffle d’une bombe nucléaire. Ainsi, une race primitive vient de signaler sa présence ainsi que le niveau technologique auquel elle est arrivée.

Immédiatement, les astronomes sonnent l’alarme et une course contre la montre commence pour la communauté scientifique qui réunit le comité chargé de traiter ce type d’alertes.

— Professeur et digne membre de la guilde des Astronomes, il semble que vous ayez une nouvelle importante à nous transmettre. Veuillez nous décrire de quoi il s’agit. Un signal reçu d’une région déserte de notre Galaxie, à ce qu’il parait.

— Merci, Votre Éminence. Vous avez raison, comme de raison. Cette nuit, un signal d’alarme nous est parvenu de plusieurs détecteurs, éliminant d’emblée un faux positif. D’une portion de notre Galaxie que nous croyions déserte de toute vie intelligente est survenu un sursaut de rayons gamma caractéristique de l’explosion d’une bombe nucléaire à fission. Comme le stipule notre protocole, j’ai immédiatement convoqué cette assemblée afin de décider des dispositions à adopter.

image_5658_1e-Gamma-Ray-Burst

— Merci professeur. Qu’en dit la guilde des Physiciens?

— Éminence, nous connaissons tous les dangers immédiats qu’encourt cette population qui a atteint le niveau critique de technologie Keaq 7. Plus des deux tiers des populations galactiques ayant acquis les connaissances nécessaires pour fabriquer des bombes à fission nucléaire n’y survivent pas, car ils s’autodétruisent en créant une escalade de violence qui devient très vite incontrôlée. Après la bombe à fission viendra la bombe à fusion qui ne possède aucune limite de puissance théorique. Il est donc impératif d’adopter des mesures appropriées le plus rapidement possible.

— Et qu’en dit maintenant la guilde des Historiens?

— Très digne Éminence. Mon collègue physicien a raison. Seulement un tiers des populations ont survécu, mais il faut comprendre pourquoi. Celles qui ne se sont pas fait exploser la tronche ont reçu de l’aide provenant d’un exopeuple dans quatre-vingts pour cent des cas. Donc la question ne se pose pas. Si nous voulons leur éviter l’extermination nous devons les aider à traverser ce niveau de dangerosité extrême en envoyant immédiatement un minimum de deux unités, mais plus serait mieux.

20d0fd67e56142eef9bf6f445a223dc5

— Votre Éminence, j’ai établi les coordonnées exactes, elles sont prêtes à être téléversées dans les ordinateurs de bord de nos vaisseaux spatiaux. Le trajet devrait nous prendre deux de leurs années à vitesse optimale.

— Bien. Maintenant, laissons place à notre collègue de la guilde des Primatologues.

— Merci, Votre Éminence. Voici un aperçu du futur de cette race Keaq 7. Durant les deux ans que durera notre voyage vers cette région, nous enregistrerons plusieurs autres explosions du même type. Ce premier sursaut gamma indique habituellement un essai de validation. Puisque l’explosion a sans conteste réussi, si le peuple qui a développé cette première bombe est actuellement en guerre, il l’utilisera très bientôt à plusieurs occasions afin de la terminer. À cause de la complexité du mécanisme, il est arrivé à très peu d’occasions que deux peuples belligérants et ennemis réussissent à s’équiper simultanément de ces engins. On voit donc rapidement survenir une accalmie signalant la fin de cette guerre. Si, en contrepartie, on ne détecte aucune autre explosion du même genre dans un court laps de temps, on peut être certain de l’absence actuelle de conflit armé, ce qui n’indique pas nécessairement de bonnes nouvelles, puisque les explosions de validation récidiveront avec des engins de plus en plus puissants jusqu’à atteindre des niveaux qui peuvent mettre en péril la structure même de leur planète. Ainsi, dans tous les cas, notre intervention est requise.

Export_Photo_Preview

— À vous, maintenant, cher membre de la guilde des Zoologues.

— Votre Éminence, remontons loin dans notre passé. Nous avons pris conscience de la valeur de tous les animaux vivant sur nos planètes et avons pris les moyens de les protéger de l’extinction, car chacune de ces espèces apporte une richesse qu’il est difficile de connaitre a priori, mais qui se révèle de grandes importances pour la science et le bien-être de nos populations. Il en est de même avec toutes les races et les peuples des autres planètes. C’est pourquoi les protéger d’eux-mêmes est non seulement important, mais crucial pour l’avenir de notre Galaxie.

andromeda-galaxy-1096858_960_720-758x474

— Quelles sont les étapes d’intervention une fois que nous serions rendus sur place, cher collègue de la guilde des Aventuriers?

— Première étape, nous devons détecter les radiations résiduelles pour dresser une carte précise et complète. Elle nous renseignera sur les lieux où les bombes ont été fabriquées, testées et ensuite utilisées. Deuxième étape, nous dresserons un inventaire de l’arsenal complet, tous peuples confondus. La troisième étape consiste à tracer la fameuse courbe Dean & Naed qui nous indiquera combien de temps il nous reste pour agir avant le déclenchement de l’apocalypse. C’est seulement à partir de la quatrième étape que les options surviennent.

204767

— Quelles sont-elles?

— La Fédération intergalactique préconise toujours de susciter une rencontre avec les chefs d’états possesseurs de la bombe nucléaire pour leur montrer les vidéos d’archives des peuples s’étant autodétruits et tout le bazar.

— Vous semblez sceptique, mon cher représentant de la guilde des Psychologues.

— C’est exact, Votre Éminence. De récentes recherches montrent qu’un sentiment de non-appropriation, de détachement accompagne la visualisation de ces vidéos d’archives. Les primitifs ne se sentent que très peu concernés, croyant qu’ils seront capables d’éviter le point de non-retour, trop enracinés dans leurs logiques guerrières.

— Alors, que devons-nous faire pour briser leurs désirs inconscients de détruire leur planète?

the-hidden-hand

— Je recommande la toute nouvelle méthode Hoxfy.

— Qui est?

— Prendre le contrôle de leurs gouvernements.

— Et ça fonctionne?

— Les résultats sont surprenants. Nos contacts à la Fédération font état de 41 peuples survivants en 42 interventions.

— Un score presque parfait, c’est intéressant. Alors, allons-y avec Hoxfy. Assurons-nous de contrôler leurs gouvernements, pour leur bien, évidemment.

 

2018 LA

Les PHA (Potentially Hazardous Asteroids), ou géocroiseurs en français, sont des objets célestes susceptibles d’entrer en collision avec la Terre. Nous tenons une liste de ceux que nous avons déjà découverts et il s’en rajoute constamment. Le compte actuel est rendu à 1913. Cependant, il en existe beaucoup plus et notre liste s’allonge presque tous les jours.

Le dernier géocroiseur découvert porte le gentil nom de 2018 LA. Il a donc été observé en 2018, durant la première quinzaine du mois de juin (L) et il est le premier (A) de cette quinzaine. Il n’apparaissait pas dans la liste d’hier. C’est donc un petit nouveau jamais aperçu auparavant.

Géocroiseur-2018LA.png

Dans cette liste sont répertoriés les géocroiseurs ayant un degré de dangerosité plus élevé que les autres. On y retrouve 3 informations essentielles à savoir la distance qui le sépare de la Terre (en distance Terre-Lune), sa vélocité et son diamètre approximatif.

2018 LA passe à zéro fois la distance Terre-Lune. Cela signifie qu’il nous frôle vraiment de très près, soit à moins de 1/20 de la distance Terre-Lune. Toutefois, son petit diamètre ne le rend pas susceptible d’atteindre la surface de la Terre. Il se consumerait probablement au complet durant son entrée dans l’atmosphère de la planète.

2018LA

Vous voyez aussi l’orbite (ellipse blanche) que cet astéroïde décrit autour du Soleil et le croisement de celle de la Terre (ellipse bleue). Actuellement, le point bleu montrant la position de la Terre est invisible, car il est situé trop près du point blanc qui le masque, montrant que l’astéroïde nous frôle vraiment de très près.