Dernières nouvelles du Higgs

Le prochain paragraphe testera votre capacité à résister aux coups sur la tête.

Le réputé boson de Higgs est une particule qui, comme tous les bosons, véhicule une force, obéit à la loi de Bose-Einstein et désobéit à celle de l’exclusion de Fermi. Son spin est un nombre entier, et permet aux trois bosons de jauge W± et Z0 d’acquérir une masse par brisure de symétrie.

Collision.png

Bon, là, êtes-vous bien assommés? Pas grave! Avant de parler des dernières nouvelles concernant cette damnée particule (goddamn particle, pas God particle), revoyons lentement quelques notions entourant cette pierre angulaire de notre théorie standard des particules.

Retour sur quelques principes

La matière, désignée sous le terme fermions, ne peut pas occuper des états quantiques identiques, c’est le principe d’exclusion de Fermi qui fait en sorte que les électrons, heureusement, ne se percutent pas.

Vous trouverez un petit résumé des particules élémentaires dans cet article.

En revanche, les bosons qu’on ne considère pas comme de la matière, mais comme des vecteurs de forces se foutent éperdument d’avoir des sosies. Ainsi, ils s’amusent parfois à tous se ressembler et se rassembler, ce qui permet d’obtenir une lumière cohérente (les lasers), de la superfluidité, de la superconductivité, ainsi que des champs comme les champs électriques, magnétiques et de Higgs.

maxresdefault-2

Les bosons ont un spin obligatoirement entier valant 0, 1 ou 2. Le boson de Higgs possède un spin de zéro, faisant du champ de Higgs un champ scalaire, c’est-à-dire sans orientation ni direction.

Champ scalaire, vous dites? Ça se mange des scalaires?

On a tous vu un champ magnétique grâce à une barre aimantée, une vitre et de la limaille de fer. La forme caractéristique des lignes du champ magnétique montre que celui-ci possède une orientation et une direction, c’est un champ vectoriel.

lumiere-solide-liquide-photons-superfluide

En revanche, la température dans une pièce est un champ scalaire semblable au champ de Higgs. À chaque point de la pièce, on peut mesurer une température comme on peut mesurer le champ de Higgs à chaque point d’un espace défini.

Désintégration

Le boson de Higgs est une particule évanescente. Elle se désintègre quasi instantanément pour former des fermions, plus particulièrement deux quarks bottom (b), dans 60 % des cas.

image-292894-860_poster_16x9-mijo-292894

Cette désintégration est si rapide que le boson de Higgs n’a jamais été lui-même aperçu. Au mieux, on avait entrevu les sous-produits de la désintégration des sous-produits de la désintégration du Higgs. La nouveauté est d’avoir pu directement voir les sous-produits immédiats qui viennent d’être confirmés par le CERN, six ans après la découverte du dernier boson à composer la théorie dite du modèle standard.

Gg_to_ttH

Cette nouvelle était attendue et n’apporte aucune surprise aux physiciens théoriques. Si leur théorie s’en voit renforcée, en revanche, elle n’entrouvre aucune brèche qui leur permettrait de pousser la physique des particules un peu plus loin. Le modèle standard tient bien la route alors qu’on sait pertinemment qu’il sera pris en défaut un jour ou l’autre. Il faudra donc chercher la faille ailleurs.

 

Ce boson n’a pas dit son dernier mot

La question fondamentale qui taraude les physiciens à propos du boson de Higgs et du champ de Higgs est de savoir pourquoi chaque particule élémentaire du modèle standard acquiert une masse distincte, voire aucune masse comme dans le cas du photon.

1a7c7c34e2_50034416_ce0085m-06.jpg

Pourquoi chaque particule réagit-elle différemment au champ de Higgs uniforme? Comment se joue cette interaction entre ce champ scalaire et les particules, cette affinité qu’on appelle le couplage, qui fait qu’elles obtiennent chacune une masse distincte et précise?

Certains pensent trouver la réponse dans la théorie de la supersymétrie (SuSy) qui permet l’existence de plusieurs bosons de spin 0 et donc des possibilités multiples de couplage. Ce n’est pas le premier exemple où la supersymétrie sauverait la logique comportementale de la physique. Malheureusement, aucune particule prévue par la supersymétrie n’a encore été détectée malgré des efforts immenses en ce sens, laissant fortement douter de son existence ailleurs que dans la tête des physiciens théoriciens.

Inversion des pôles

D’entrée de jeu, une précision très importante. Lorsqu’il est question d’inversion des pôles dans l’actualité, il est toujours question des pôles magnétiques de la Terre, jamais des pôles géographiques. Certains JeConnaisTout semblent incapables de faire la différence entre les deux types. Ils font ainsi toutes sortes de prédictions stupides à partir d’une fausse hypothèse. Les pôles géographiques ne peuvent pas s’inverser à cause de la présence de la Lune, entre autres choses. L’impact de la Terre avec un astéroïde géant pourrait les inverser, mais on crèverait pour une autre raison que l’inversion des pôles géographiques.

Ceci étant clarifié, les pôles magnétiques, eux, certainement qu’ils peuvent s’inverser et ils l’ont fait très souvent dans le passé. La dernière inversion s’est produite voilà 780 000 ans. Comment est-ce possible de savoir ces choses alors qu’il n’y avait personne pour s’en rendre compte ?

389158.jpg

Les planchers océaniques se renouvellent à partir des dorsales qui rejettent de la lave. Les particules ferromagnétiques de cette lave sont sensibles au champ magnétique terrestre et s’orientent selon ce dernier. Lorsque la lave durcit, les particules figent en conservant pour toujours leur orientation magnétique. Il ne reste qu’à lire cette orientation et à mesurer le temps géologique déterminé par la distance séparant les particules aimantées de la dorsale. Connaissant la vitesse à laquelle le plancher océanique se régénère, on obtient le temps. Voilà comment on parvient à mesurer le moment où la dernière inversion et toutes les précédentes se sont produites.

Depuis quelques années, le nord magnétique s’affole. Il se déplace très rapidement du Canada vers la Sibérie. C’est l’un des signes précurseurs d’une inversion, ou à tout le moins d’une excursion si le pôle magnétique se déplace, mais ne bascule pas. Il y a eu 7 excursions depuis le dernier basculement. Les inversions ne semblent pas suivre de périodicité. Certaines inversions furent très rapides, alors que d’autres ont pris encore plus de temps que la dernière dans laquelle nous vivons aujourd’hui. On ne peut donc pas les prédire à partir d’un cycle stable.

Mais le problème ne vient pas de l’inversion des pôles si on exclut l’obsolescence des boussoles. Il vient de l’affaiblissement du champ magnétique avant et après l’inversion. La force du champ magnétique diminue actuellement de 5 % par décennie, 10 fois plus vite qu’avant 1980. De plus, le pôle Nord magnétique se déplace actuellement de 90 km par année du Canada vers la Sibérie. Tous ces signes sont précurseurs d’une inversion qui semble survenir beaucoup plus rapidement qu’imaginée auparavant. La Terre pourrait aussi adopter plusieurs pôles magnétiques Nord et Sud durant l’inversion comme on le voit ici sur la simulation numérique.

magnetic-inversion

Un champ magnétique plus faible nous protège moins bien des rayons cosmiques et des tempêtes solaires. En haute altitude, comme en avion, nous serons laissés pratiquement sans aucune protection. Et même sur le plancher des vaches, cette protection moindre ouvrira la voie à de multiples conséquences au niveau de notre santé, dont de multiples cas de cancers.

Images : le-veilleur.com; maxicours.com; sites.google.com