Dernières nouvelles du Higgs

Le prochain paragraphe testera votre capacité à résister aux coups sur la tête.

Le réputé boson de Higgs est une particule qui, comme tous les bosons, véhicule une force, obéit à la loi de Bose-Einstein et désobéit à celle de l’exclusion de Fermi. Son spin est un nombre entier, et permet aux trois bosons de jauge W± et Z0 d’acquérir une masse par brisure de symétrie.

Collision.png

Bon, là, êtes-vous bien assommés? Pas grave! Avant de parler des dernières nouvelles concernant cette damnée particule (goddamn particle, pas God particle), revoyons lentement quelques notions entourant cette pierre angulaire de notre théorie standard des particules.

Retour sur quelques principes

La matière, désignée sous le terme fermions, ne peut pas occuper des états quantiques identiques, c’est le principe d’exclusion de Fermi qui fait en sorte que les électrons, heureusement, ne se percutent pas.

Vous trouverez un petit résumé des particules élémentaires dans cet article.

En revanche, les bosons qu’on ne considère pas comme de la matière, mais comme des vecteurs de forces se foutent éperdument d’avoir des sosies. Ainsi, ils s’amusent parfois à tous se ressembler et se rassembler, ce qui permet d’obtenir une lumière cohérente (les lasers), de la superfluidité, de la superconductivité, ainsi que des champs comme les champs électriques, magnétiques et de Higgs.

maxresdefault-2

Les bosons ont un spin obligatoirement entier valant 0, 1 ou 2. Le boson de Higgs possède un spin de zéro, faisant du champ de Higgs un champ scalaire, c’est-à-dire sans orientation ni direction.

Champ scalaire, vous dites? Ça se mange des scalaires?

On a tous vu un champ magnétique grâce à une barre aimantée, une vitre et de la limaille de fer. La forme caractéristique des lignes du champ magnétique montre que celui-ci possède une orientation et une direction, c’est un champ vectoriel.

lumiere-solide-liquide-photons-superfluide

En revanche, la température dans une pièce est un champ scalaire semblable au champ de Higgs. À chaque point de la pièce, on peut mesurer une température comme on peut mesurer le champ de Higgs à chaque point d’un espace défini.

Désintégration

Le boson de Higgs est une particule évanescente. Elle se désintègre quasi instantanément pour former des fermions, plus particulièrement deux quarks bottom (b), dans 60 % des cas.

image-292894-860_poster_16x9-mijo-292894

Cette désintégration est si rapide que le boson de Higgs n’a jamais été lui-même aperçu. Au mieux, on avait entrevu les sous-produits de la désintégration des sous-produits de la désintégration du Higgs. La nouveauté est d’avoir pu directement voir les sous-produits immédiats qui viennent d’être confirmés par le CERN, six ans après la découverte du dernier boson à composer la théorie dite du modèle standard.

Gg_to_ttH

Cette nouvelle était attendue et n’apporte aucune surprise aux physiciens théoriques. Si leur théorie s’en voit renforcée, en revanche, elle n’entrouvre aucune brèche qui leur permettrait de pousser la physique des particules un peu plus loin. Le modèle standard tient bien la route alors qu’on sait pertinemment qu’il sera pris en défaut un jour ou l’autre. Il faudra donc chercher la faille ailleurs.

 

Ce boson n’a pas dit son dernier mot

La question fondamentale qui taraude les physiciens à propos du boson de Higgs et du champ de Higgs est de savoir pourquoi chaque particule élémentaire du modèle standard acquiert une masse distincte, voire aucune masse comme dans le cas du photon.

1a7c7c34e2_50034416_ce0085m-06.jpg

Pourquoi chaque particule réagit-elle différemment au champ de Higgs uniforme? Comment se joue cette interaction entre ce champ scalaire et les particules, cette affinité qu’on appelle le couplage, qui fait qu’elles obtiennent chacune une masse distincte et précise?

Certains pensent trouver la réponse dans la théorie de la supersymétrie (SuSy) qui permet l’existence de plusieurs bosons de spin 0 et donc des possibilités multiples de couplage. Ce n’est pas le premier exemple où la supersymétrie sauverait la logique comportementale de la physique. Malheureusement, aucune particule prévue par la supersymétrie n’a encore été détectée malgré des efforts immenses en ce sens, laissant fortement douter de son existence ailleurs que dans la tête des physiciens théoriciens.

Verra-t-on un trou noir en 2018 ? (1)

Est-ce que nous pourrons voir un trou noir très bientôt ?

Évidemment, la question aurait de quoi faire rire. Puisque le fond du cosmos est noir, regarder un trou noir sur un fond noir, c’est comme observer un corbeau dans un placard. Pourtant, il est possible de voir ce à quoi un trou noir ressemble en regardant ses effets sur son environnement.

Afin de répondre à la question initiale, j’aurai besoin d’expliquer succinctement différents concepts que je distribuerai dans des articles distincts.

Le premier article sera donc consacré à rappeler comment se forme un trou noir afin de comprendre sa nature.

Une étoile est un délicat équilibre entre deux forces antagonistes. Tout d’abord, une étoile, c’est une bombe nucléaire. La pression engendrée par la fusion nucléaire tend donc à disperser les constituants de l’étoile comme le fait n’importe quelle bombe nucléaire. Toutefois, puisqu’une étoile est aussi un agrégat important de matière, la gravitation retient la matière éjectable en la concentrant au centre de l’astre, ce qui maintient l’étoile en une sphère plutôt stable.

Une étoile est donc une sorte de balance à ressort qui retient le poids déposé sur son plateau en le repoussant jusqu’à un équilibre entre les deux.

resize.jpeg

Formation d’une étoile à neutrons

Cependant, le carburant nucléaire venant en fin de compte à manquer — et cela arrive d’autant plus rapidement que l’étoile est obèse — la pression des explosions nucléaires ne suffit plus à contrebalancer la force gravitationnelle qui comprime l’étoile. De ce combat singulier perdu d’avance, l’étoile finira par imploser sous son propre poids. Si elle possède suffisamment de matière, l’implosion réussira à vaincre les autres forces répulsives possibles dans la matière. Les électrons deviendront incapables de se repousser mutuellement (principe d’exclusion de Pauli) et finiront par s’écraser sur les noyaux des atomes. Ce faisant, les électrons fusionneront avec les protons du noyau pour former des neutrons. On obtient ainsi une étoile d’une densité extrême dont son cœur est entièrement composé de neutrons. Tous ces neutrons sont comprimés dans une sphère de 20 à 40 km de diamètre pour l’équivalent en poids d’une étoile de 1,4 à 3,2 fois la masse de notre Soleil. C’est dire comment la densité de la matière est importante ! Mais une étoile à neutrons n’est pas encore un trou noir.

Trop de matière pour résister

Si l’étoile à neutrons possède une masse supérieure à 3,2 fois celle de notre Soleil, ces particules neutres formant une espèce de noyau atomique géant seront elles aussi incapables de résister à la force gravitationnelle. Les quarks composant les neutrons atteindront leur limite de résistance et flancheront à leur tour.

8230235118_ae689ff1db_k

Formation d’un trou noir stellaire

À cette étape, il n’existe plus aucun autre mécanisme pouvant résister à la force gravitationnelle. La matière atteint alors sa limite d’existence et s’écrase en se concentrant un point infiniment petit. Le résultat est une singularité des équations de la relativité générale d’Einstein. Un point infiniment petit concentrant une masse de densité infiniment grande. Un trou noir est né.

Ouais, la physique n’aime pas trop les infinis et ces deux infinis du trou noir signifient qu’on a un « trou » dans notre théorie. Un trou noir de connaissances liées aux trous noirs qu’on ne parvient pas à éclaircir. Ironique, n’est-ce pas ? Cette formation des trous noirs se rapporte aux trous noirs d’origine stellaire, c’est-à-dire qu’une étoile est à l’origine du trou noir. Il atteint des masses maximales aux alentours de 14 fois celle de notre Soleil.

messier_106_multifrequence_hubble_galex_chandra_by_damylion-d7qoy0k

Trou noir galactique (supermassif)

Il existe aussi des trous noirs galactiques. Ce sont des trous noirs tapis au cœur de la plupart des galaxies. Leur origine est controversée, mais il est certain qu’ils ont cru en avalant de la matière environnante et par coalescence avec d’autres trous noirs. Le record est détenu par le trou noir supermassif de la galaxie NGC 4889 qui aurait un petit 21 milliards de fois la masse de notre soleil !

La Voie lactée, notre Galaxie, cache également un trou noir supermassif en son sein. Il deviendra important pour la suite de cet article. Toutefois, sa dimension reste modeste. Il a la taille plutôt fine à comparer à bien d’autres trous noirs en ne pesant que 4 millions de fois la masse de notre Soleil !

Dans le prochain article, j’expliquerai simplement ce qu’on appelle l’horizon des événements d’un trou noir. Cette notion est essentielle pour comprendre comment on peut observer un trou noir.

Je vous donne rendez-vous demain pour la suite de ce passionnant feuilleton et vous encourage entretemps à poser vos questions sous forme de commentaire.

À bientôt.