Rodgers Creek Fault

Ce nom ne dit pas grand-chose à la plupart des gens. Comme son nom anglais l’indique, on parle d’une faille, la faille du ruisseau Rodgers. Elle est située en Californie et l’on parle évidemment d’une faille tectonique. Située à l’est de la fameuse faille de San Andreas et à l’ouest de la vallée de Napa que tous connaissent, elle commence à la hauteur de San Francisco pour se prolonger elle aussi vers le Nord-Ouest.

collect2

Si cette faille ne fait pas autant parler d’elle que sa grande sœur, c’est qu’elle est très calme. Pourtant, les géologues spécialistes de la région s’entendent à dire que le prochain grand séisme pourrait bien provenir de celle-ci. En fait, on évalue les probabilités de décrochage majeur de magnitude M>=6,7 de la faille Rodgers Creek à près de 33 % d’ici les 25 prochaines années.

De type coulissante, cette faille accumule les tensions au rythme de 6 à 10 mm par année. En 2016, on a revu son degré de dangerosité à la hausse ainsi que sa longueur totale en lui ajoutant 17 km. Au sud, elle est reliée à la faille Hayward qui descend jusqu’à San José. Le lieu de leur union se situe au cœur de la baie de San Pablo, une étendue d’eau connectée au nord de la baie de San Francisco.

Hayward-Rodger-Creek-Fault-Bay-Area-Fault-Map-San-Andreas-Fault.jpg

Le parallélisme des failles de San Andreas et du duo Rodgers Creek – Hayward démontre la complexité du réseau de failles situées en Californie et conséquemment la difficulté de connaitre le lieu de la prochaine catastrophe. On est toutefois assuré que les déplacements permanents des plaques les unes par rapport aux autres finiront par se traduire en un décrochage d’autant plus violent que les plaques seront restées longtemps silencieuses.

F2.large

Bien qu’on parle encore quotidiennement du fameux tremblement de terre de 1906, San Francisco ne semble pas vraiment en avoir tiré des leçons pour l’avenir. Le réveil sera brutal lorsque surviendra un énorme séisme, surtout s’il provient d’un endroit peu connu pour en causer de sérieux.

041816-kgo-1906-sf-great-quake-img_image_16-48-4712-1024x576

Cette ville de la côte pacifique a connu son dernier grand tremblement de terre le 17 octobre 1989 lorsqu’un séisme d’une magnitude de 6,9 l’a frappée de plein fouet. J’ai pu voir les dégâts, car je me suis retrouvé à San Francisco quelques jours plus tard. Je n’ose imaginer la destruction qu’occasionnerait un séisme de magnitude 8,0 ou plus. Étrangement, la ville n’a pas de normes de constructions de la trempe des villes nippones susceptibles d’être frappées par un fort séisme. La ville californienne a été reconstruite et agrandie dans l’insouciance qui caractérise très souvent les habitants de ce pays et ils risquent bientôt de la payer cher.

Skyline-Downtown-Close-up-1500

Un scénario jugé probable par l’USGS (United States Geological Survey) considère un décrochage de la faille Rogers Creek de 0,9 m sur une distance de 63 km associé à un décrochage simultané de la faille Hayward de 1,2 m sur une distance de 83 km occasionnerait un séisme de magnitude 7,2. Toutefois, si on se fie à la carte des amplifications des secousses occasionnées par la fluidité de certains terrains, plusieurs régions densément peuplées subiraient des dégâts très importants.

shechbri

Cependant, la magnitude d’un séisme n’est qu’un parmi plusieurs indices de sa dangerosité. Elle évalue l’énergie relâchée durant cet épisode, mais pas directement l’amplitude des ondes sismiques qui occasionnent les dégâts matériels. Pour une même magnitude, de fortes amplitudes sur une surface restreinte s’avèreront plus dangereuses que de faibles amplitudes sur une plus grande surface.

bayamate

On ne s’attend pas que le fameux Big One tant discuté provienne de la faille Rodgers Creek, mais plutôt de la faille de San Andreas qui la longe plus à l’Ouest et qui démontre un potentiel de dangerosité bien supérieur puisqu’elle court directement sous la ville de San Francisco. Toutefois, si un séisme risque de surprendre là où on s’attend moins à en subir un, c’est bien celui qui surviendra lors du décrochage de la faille Rodgers Creek.

La catastrophe Cascadia

On pourrait croire à une rumeur, comme il en existe des milliers sur internet provenant de gens en mal de célébrité ou de revenus provenant d’une vidéo mal foutue mise sur YouTube.

Pourtant, ce dont je vais vous parler n’est pas du tout une farce ou une rumeur infondée et elle concerne une catastrophe naturelle encore plus importante que celle ayant engendré un tsunami dévastateur en Indonésie en 2004, mais cette fois-ci, le malheur frappera l’ouest du Canada et des É.-U.

Pâtiront de ce cataclysme, les villes populeuses de Vancouver, Seattle, Portland et Tacoma. Cependant, des dégâts majeurs et des pertes de vies par dizaines de milliers se produiront sur une longueur de 700 km le long de la côte ouest-nord-américaine. Les autorités des deux pays sont au courant depuis un bon bout de temps, mais on n’évacue pas des millions de personnes réparties dans une région aussi grande que la France sans raison évidente à très court terme.

seisme

Je parle d’un séisme comme nous en avons peu connu. Les experts évaluent la magnitude du séisme déjà nommé Cascadia à 9,2 sur l’échelle Richter. En comparaison, le méga séisme de 2004 avait une magnitude de 9,0. Le cataclysme Cascadia correspondrait au troisième plus important séisme enregistré de notre histoire.

Pourquoi cette prévision n’est-elle pas une rumeur? Voici les faits. En l’an 1700, un terrible tsunami a dévasté le Japon ainsi que la côte ouest-américaine. Des légendes amérindiennes et des écrits japonais en ont attesté. Les géologues ont pu relier ces deux événements à un seul cataclysme de magnitude approximative de 9,0 survenu près des côtes américaines. D’autres cataclysmes d’amplitudes comparables se sont produits au même endroit à des époques plus lointaines. Ces séismes de très grandes amplitudes attestées par des preuves géologiques laissées par les tsunamis ont une récurrence d’environ 240 ans.

796446.jpg

Ainsi, autour des années 1940, un autre séisme de cette nature aurait dû se produire, mais ce ne fut pas le cas. Ce retard de 78 ans augure très mal puisque l’énergie continuant de s’accumuler à un rythme constant, lors de sa libération, elle en sera d’autant plus importante, de là l’évaluation du 9,2, une prévision très réaliste vu la longueur importante de 700 km de la rupture qui l’engendrera.

De fait, la cause de ces séismes de grande amplitude est bien connue. Le restant d’une vieille plaque tectonique nommée Juan de Fuca plonge sous la plaque nord-américaine qui se déforme sous l’énorme pression occasionnée par le frottement des plaques l’une sur l’autre. Lorsque l’élasticité de la plaque nord-américaine atteindra son point de rupture, elle décrochera en libérant toute l’énergie qu’elle aura accumulée durant ces 318 années le long des 700 km que mesure la plaque Juan de Fuca (ligne rouge).

Cascadia1.pngLa Colombie-Britannique et les états américains de Washington et de l’Oregon seront les premiers touchés par ce séisme, mais aussi par le tsunami dévastateur qui frappera les côtes seulement une quinzaine de minutes après le méga tremblement de terre. Bien peu de gens des basses altitudes auront le temps et l’opportunité de fuir vers des lieux surs à hauteur suffisante pour éviter les flux et reflux meurtriers.

Les organismes comme l’USGS (US Geological Survey)) et le FEMA (Federal Emergency Management Agency) ne peuvent rien faire pour éviter cette catastrophe. Ils installent des pancartes le long des côtes pour indiquer aux gens vers où s’enfuir. Ils organisent les futurs secours, mais s’ils voulaient réduire de façon importante les victimes, il faudrait évacuer les habitants de la côte ouest-nord-américaine sans connaitre pour combien de temps. On parle donc d’un déménagement permanent et non d’une simple évacuation. Puisque cela ne se produira pas et que le séisme frappera sans prévenir, le nombre de victimes sera conséquent.

Photos : geide.asso.frsciencealert.comexpress.co.uk

Inversion des pôles

D’entrée de jeu, une précision très importante. Lorsqu’il est question d’inversion des pôles dans l’actualité, il est toujours question des pôles magnétiques de la Terre, jamais des pôles géographiques. Certains JeConnaisTout semblent incapables de faire la différence entre les deux types. Ils font ainsi toutes sortes de prédictions stupides à partir d’une fausse hypothèse. Les pôles géographiques ne peuvent pas s’inverser à cause de la présence de la Lune, entre autres choses. L’impact de la Terre avec un astéroïde géant pourrait les inverser, mais on crèverait pour une autre raison que l’inversion des pôles géographiques.

Ceci étant clarifié, les pôles magnétiques, eux, certainement qu’ils peuvent s’inverser et ils l’ont fait très souvent dans le passé. La dernière inversion s’est produite voilà 780 000 ans. Comment est-ce possible de savoir ces choses alors qu’il n’y avait personne pour s’en rendre compte ?

389158.jpg

Les planchers océaniques se renouvellent à partir des dorsales qui rejettent de la lave. Les particules ferromagnétiques de cette lave sont sensibles au champ magnétique terrestre et s’orientent selon ce dernier. Lorsque la lave durcit, les particules figent en conservant pour toujours leur orientation magnétique. Il ne reste qu’à lire cette orientation et à mesurer le temps géologique déterminé par la distance séparant les particules aimantées de la dorsale. Connaissant la vitesse à laquelle le plancher océanique se régénère, on obtient le temps. Voilà comment on parvient à mesurer le moment où la dernière inversion et toutes les précédentes se sont produites.

Depuis quelques années, le nord magnétique s’affole. Il se déplace très rapidement du Canada vers la Sibérie. C’est l’un des signes précurseurs d’une inversion, ou à tout le moins d’une excursion si le pôle magnétique se déplace, mais ne bascule pas. Il y a eu 7 excursions depuis le dernier basculement. Les inversions ne semblent pas suivre de périodicité. Certaines inversions furent très rapides, alors que d’autres ont pris encore plus de temps que la dernière dans laquelle nous vivons aujourd’hui. On ne peut donc pas les prédire à partir d’un cycle stable.

Mais le problème ne vient pas de l’inversion des pôles si on exclut l’obsolescence des boussoles. Il vient de l’affaiblissement du champ magnétique avant et après l’inversion. La force du champ magnétique diminue actuellement de 5 % par décennie, 10 fois plus vite qu’avant 1980. De plus, le pôle Nord magnétique se déplace actuellement de 90 km par année du Canada vers la Sibérie. Tous ces signes sont précurseurs d’une inversion qui semble survenir beaucoup plus rapidement qu’imaginée auparavant. La Terre pourrait aussi adopter plusieurs pôles magnétiques Nord et Sud durant l’inversion comme on le voit ici sur la simulation numérique.

magnetic-inversion

Un champ magnétique plus faible nous protège moins bien des rayons cosmiques et des tempêtes solaires. En haute altitude, comme en avion, nous serons laissés pratiquement sans aucune protection. Et même sur le plancher des vaches, cette protection moindre ouvrira la voie à de multiples conséquences au niveau de notre santé, dont de multiples cas de cancers.

Images : le-veilleur.com; maxicours.com; sites.google.com