Guide d’interprétation des cris du Corbot — 1

Ce guide me servira pour inviter les lecteurs à s’y référer lorsque leur interprétation ne correspond pas, ou risque de ne pas correspondre, à l’esprit de mes textes.

Je voudrais tellement que cet article soit le dernier de sa série, mais je ne m’illusionne plus depuis belle lurette, raison de sa numérotation.

Pour cette entrée en matière, comment interpréter correctement mon cri lorsque je fais référence à l’humain ou à l’humanité, surtout lorsque je décris ses pires défauts. Plusieurs de mes lecteurs pensent que je généralise, que je globalise les humains, que j’arase leurs différences. Rien n’est plus faux.

Je me sens malheureusement obligé d’expliquer certains fondements de ma pensée, même ceux qui me semblent les plus évidents. Oui, j’ai été éberlué de constater que bien des gens ne font pas ou ne veulent pas faire la différence entre une probabilité et une généralité. Je vais donc l’expliquer ici même à l’aide d’un support visuel.

Courbe-Gauss

Parmi les courbes de ce graphique, l’une d’elle montre une généralité où tous les humains sont identiques sur un point, celle qui ne montre aucune diversité, la ligne de couleur cyan. Ce graphique serait adéquat si la question était de savoir par exemple combien de cerveaux ont les humains. Affirmer que les humains ont un cerveau, c’est émettre une généralité représentée par la courbe cyan ayant une probabilité de cent pour cent sans écart type.

Par contre, si la question posée permet un grand nombre de réponses et si l’échantillonnage est élevé, il apparait systématiquement la fameuse courbe en cloche, la courbe de densité de Gauss. Elle présente la distribution des humains et les probabilités de trouver la majorité d’entre eux, de situer les pires et les meilleurs en rapport avec une question précise.

Dans la réalité, cette courbe n’apparait jamais aussi parfaite, mais elle s’applique partout, peu importe le sujet traité, dès que le nombre d’individus est élevé. Et à 7,3 milliards d’humains, on ne se trompe pas sur la quantité mise en examen. Il est facile de constater la différence entre une distribution et son contraire, une généralisation.

Dans mes articles, je ne généralise jamais un comportement lorsque je décris « l’humain ». Je concentre habituellement mon attention autour du pic de densité. Mais il y a des exceptions et je peux également décrire des comportements d’individus qui se situent tout au bas de la courbe, soit les pires de leur espèce. Dans ces circonstances, j’utilise encore la formule « l’humain » pour parler d’eux. Est-ce une faute ? Si l’on s’entend sur le principe de la courbe en cloche, il faut interpréter mes croassements en conséquence. Les pires humains sont des individus faisant également partie de l’humanité. Et concernant l’humanité que je décris dans plusieurs de mes articles, voici ma position.

Les humains sont égaux, mais n’influencent pas leurs semblables de façon égale. Souvent, ce sont les pires qui détiennent le pouvoir et ils dirigent l’humanité là où ils le veulent, sans égard aux volontés des autres et peu importe leur nombre. Lorsque j’utilise le terme « humanité », je ne cherche jamais à décrire individuellement chacun des humains. Je décris le mouvement global de l’humanité orienté par très peu d’individus.

Vous savez maintenant comment interpréter les cris du Corbot lorsqu’il écrit « humain » ou « humanité ». Alors j’aimerais bien en terminer avec la fausse idée que je cherche à mettre tout le monde dans le même bac. 

Dans mes futurs articles, je ne rajouterai aucune précision qui, à mon avis, est superflue car triviale. Dorénavant, lorsque les lecteurs exprimeront cette opinion, je les référerai à ce texte.

Cependant, je me questionne sur cette propension à considérer mon opinion comme une généralisation des humains, une compression outrancière de la courbe de Gauss. Mon comportement serait parfaitement inapproprié et surtout inexact. Mes pensées s’élèvent bien au-dessus de ce niveau simpliste de raisonnement, n’en déplaise aux pistoleros de la critique.

Rejeter en bloc le fondement de mes textes par cet argument équivaut à les mettre dans un gros sac vert pour en disposer plus facilement, tout cela parce les cris du Corbot dérangent.

Nous désirons tous se savoir au-dessus de la moyenne, surtout très au-dessus de la moyenne. La réalité se veut rarement aussi condescendante, alors l’esprit cherche une échappatoire. Interpréter inadéquatement les cris du Corbot apporte inconsciemment l’issue par laquelle il est possible de se défiler en douce.

Cette généralisation qu’on me prête, elle ne m’appartient pas, alors je la retourne à leur propriétaire.

Allez, Terre, dis-le-moi !

Il existe quelques endroits au monde qui se partagent, s’échangent, se disputent le titre du plus vieux terrain de la Terre.

On a tout d’abord un craton en Afrique du Sud, l’Australie défend aussi chèrement sa vieillesse, tout comme le Groenland qui détenait la palme jusqu’à tout dernièrement avec un prélèvement âgé de 3,8 milliards d’années. Mais récemment, des géologues québécois ont rendu les trois autres pays jaloux.

image-2

Je me souviens lorsque j’étais plus jeune et je croisais ce genre de rochers qui me semblaient bien étranges avec leurs veines ou taches blanchâtres circulant au travers d’une gangue d’un gris neutre, terne, triste, patiné. Instinctivement, je semblais déjà comprendre que cette roche était très vieille. Elle ne possédait à peu près aucun attrait, semblait fatiguée d’exister, elle avait cédé ses trésors primordiaux pour ne garder que l’ennui. Par contre, ce substrat paraissait extrêmement solide, dur, dense, inaltérable, et pourquoi pas éternel !

thumb

Des prélèvements effectués au Nunavik dans le nord du Québec ont révélé un âge jamais atteint par aucun autre caillou sur Terre. Il serait âgé de 4,2 milliards, voire 4,3 milliards d’années alors que l’âge de la planète est estimé à 4,54 milliards d’années. C’est dire comment ces roches furent parmi les premières à apparaitre à la surface et à n’avoir jamais été recyclées ou totalement érodées.

1462

J’en ai parlé dans d’autres articles, au Québec le sol fait presque totalement partie du Bouclier canadien, une vaste étendue de roc solidaire issu du magma remonté près de la surface puis solidifié par lent refroidissement. C’est essentiellement du granit, une roche plutonique, c’est-à-dire qu’il ne s’est jamais produit d’effusion de lave. Le refroidissement du magma s’est effectué en profondeur, gardant ainsi une forme cristalline à plus haute densité.

Une datation précise et comparative avec les autres sites ailleurs dans le monde reste difficile. Dans le cas des roches du Nunavik, on y est allé avec la désintégration du samarium 146 aujourd’hui entièrement transformé en néodyme 142, un isotope stable.

DSC06852

Cette découverte confirme quelques hypothèses comme l’âge de la Terre ou une autre suggérant qu’elle était à ses débuts une immense boule en fusion, que les continents ont émergé du magma bien plus tôt qu’imaginé autrefois et que des croûtes toujours visibles ont résisté à toutes les conditions ayant mené à la disparition des autres continents. On peut donc étudier la composition chimique de ces roches maintes fois milliardaires afin de mieux comprendre les origines de la formation de notre globe et les mécanismes naturels qui l’ont alors façonné.

image3-121

Étrange qu’un si jeune pays soit si vieux et qu’émergeant tout récemment de la dernière période glaciaire, il laisse maintenant apparaitre son âge vénérable. Nous, habitants de ce lieu, sommes-nous influencés par le sol sous nos pieds ? Percevons-nous sa solidité à toute épreuve ? Nous inspire-t-il son calme, son assurance, sa patience ? J’aimerais croire qu’il en soit ainsi, que nous, humains vivant à sa surface, devenons plus solides et plus sages à son contact. Une force tranquille que rien ne peut faire disparaitre. Une assise maintes fois éprouvée, mais toujours bien ancrée. Est-il possible qu’on devienne de meilleurs humains si l’on vit sur un meilleur sol ? Nous imprègne-t-il de ses qualités intrinsèques ?

8-qc-101gaspesie.jpg

Le meilleur moyen de le savoir serait de lui poser la question. Il est probablement dur… d’oreille, mais je suis certain qu’il pourrait me répondre… à sa façon. Un rare petit séisme de faible amplitude pourrait constituer une bonne façon de me le confirmer.

Allez, Terre, dis-le-moi !

Vivons-nous dans un trou noir ?

Je mets tout de suite les points noirs sur les i. Le trou noir dans lequel nous vivrions ne serait rien de moins que notre Univers. J’aurais pu intituler mon article : « L’Univers est-il un trou noir ? » Ainsi, sortez immédiatement de votre esprit toutes les autres interprétations, autant celles de natures socio-économiques que salaces.

Ce qui amène les scientifiques, dont les cosmologistes, à s’interroger de la sorte, ce sont certains rapprochements possibles entre les deux. Je ne reviendrai pas sur l’ensemble des concepts théoriques des trous noirs, seulement sur celui qui concerne une vision « extérieure » qui est sa capacité de retenir infiniment ce qui se rapproche en deçà d’un certain rayon de son centre.

Donc, si notre Univers, là où nous vivons, correspondait à l’intérieur d’un trou noir, nous ne pourrions jamais en sortir. Ce concept de l’emprisonnement absolu est déjà considéré comme étant une particularité de notre Univers, sinon ce ne serait pas un Univers. Voilà le premier point commun visiblement attesté, même s’il n’est que supposition.

Partant de là, il est possible de déterminer si notre Univers est un véritable trou noir en mesurant ses dimensions et sa densité moyenne. Plus les dimensions d’un trou noir croissent, plus sa densité diminue. Il est donc possible de corréler les deux. Et si ce que nous savons sur les dimensions et la densité de notre Univers est juste, il est donc possible de confirmer ou d’infirmer le principe d’un Univers trou noir.

Densité moyenne de l’Univers

Avec une densité moyenne établie par observation à 5 atomes d’hydrogène par mètre cube, la matière dans l’Univers est passablement ténue. Ce chiffre fait fi de tous les autres atomes considérés comme marginaux, y compris l’hélium même s’il contribue à environ 10 % des atomes de l’Univers.

Dimensions de l’Univers

Le problème survient surtout lorsqu’on veut connaitre les dimensions de notre Univers. Il n’y a aucun moyen de vraiment les connaitre.

Expansion de l’Univers

Puisque l’espace est en expansion depuis le Big Bang survenu il y a de cela 13,8 milliards d’années, ce n’est pas seulement la frange limite qui s’éloigne, c’est chaque atome d’espace qui laisse place à d’autres atomes d’espaces autour de lui, contribuant à faire gonfler l’espace global de manière ahurissante. Ainsi, l’expansion de l’espace engendre des effets rendant sa mesure impossible.

Vitesse de la lumière

Puisque la lumière prend un certain temps à voyager dans l’espace, il peut exister des endroits éloignés de l’espace dont la lumière ne pourra jamais nous atteindre puisque l’expansion de l’espace entre ces lieux et la Terre grandit trop vite pour laisser le temps à la lumière de parcourir le chemin supplémentaire. Ces portions de notre Univers nous resteront pour toujours inconnues.

Dimensions de l’Univers observable

À défaut de connaitre ce qui existe au-delà de ce que la vitesse de la lumière nous permet de distinguer, on est contraint de ne pouvoir mesurer que ce qui est observable. Certains cosmologistes estiment cette dimension à 93 milliards d’années-lumière de diamètre et ce ne serait que l’Univers observable depuis la Terre, pas l’Univers entier.

Univers infini

L’Univers pourrait être infini, cependant tous les infinis indisposent passablement une grande quantité de physiciens qui voient dans ce terme des relents culturels religieux inappropriés, ils préfèrent le croire fini, tout en avouant leur ignorance sur sa possible taille réelle.

Le problème du contenant

D’autre part, si on considère cette valeur comme si nous la mesurions à partir de l’extérieur de l’Univers, on considère alors que le contenu de l’Univers s’étend dans un plus grand contenant que lui-même. Il faudrait donc englober ce contenant supplémentaire dans la mesure des dimensions de tout l’Univers. Mais où cesse ce jeu des poupées russes ?

Le problème de l’observateur

En physique, un bon observateur doit rester indépendant de ce qu’il observe, sinon ses constatations deviennent contestables. En faisant partie de l’Univers que nous tentons de mesurer, le statut d’observateur fiable nous est interdit et ainsi nos conclusions resteront toujours douteuses.

Expansion égale accrétion

Un trou noir accroit ses dimensions seulement s’il est en train de bouffer de l’énergie sous n’importe quelle forme. Puisque notre Univers grandit, s’il est un trou noir, il serait en train d’avaler quelque chose venu se promener dans son entourage extérieur. Mais dans ce cas, nous devrions voir de la matière ou de l’énergie apparaitre quelque part dans l’Univers. Toutefois, étant donné que nous n’avons pas accès à voir tout l’Univers, il devient difficile de réfuter l’existence de cette activité. Tout ce qu’on peut dire, c’est qu’on n’a jamais rien vu de tel dans la portion de l’espace qui nous est visuellement accessible. L’astrophysicien Fred Hoyle, le père du terme « Big Bang », parlait de notre Univers en lui donnant la propriété de faire apparaitre subitement de la matière. Cette vision correspondrait à celle d’un Univers trou noir en train de bouffer des mondes externes. Malheureusement, cet aspect est contredit par la diminution de la température du fond cosmologique qui devrait augmenter avec la quantité de matière alors qu’elle est en diminution constante depuis le Big Bang.

Né d’un trou noir

Ne pas confondre un Univers étant un lui-même un trou noir et un Univers né d’un trou noir. Cette dernière hypothèse est souvent évoquée pour expliquer l’événement Big Bang. L’Univers serait une fontaine blanche, une éjection issue d’un trou noir. Le problème est que personne n’a réussi jusqu’à présent à m’expliquer comment un trou noir peut créer une fontaine blanche alors que rien ne peut lui échapper. Lui aurait-on inséré un bâton dans son trou noir et il aurait vomi ses tripes ? Dans ma tête, ceux qui ont inventé le concept de fontaine blanche effectuent une piètre tentative pour réhabiliter la nature définitive et irrécupérable d’un trou noir qui est de dévorer sans restituer… ou si peu lorsqu’il s’évapore en émettant quelques particules de-ci de-là, mais rien pour créer une fontaine de jouissance blanche pour physiciens en manque de libido d’idées.

Mon opinion

Je considère notre Univers en vase clos et à ce titre, il se comporte comme un trou noir en ne laissant rien échapper. Cependant, il devrait posséder d’autres caractéristiques communes avec ces monstres cosmiques qu’à mon avis, il ne partage pas. Ainsi, notre Univers ne serait pas un véritable trou noir au sens einsteinien du terme.

Peuples galactiques

En raison de l’exploration de notre seul système solaire, nous savons que les exoplanètes telluriques ne sont pas toutes susceptibles d’abriter la vie. Tout d’abord, les planètes doivent se retrouver dans l’anneau d’habitabilité, là où la température de l’eau à la surface peut se maintenir autour des 25 °C.

Il existe aussi une question de gravité. Une planète trop petite et trop peu dense ne pourra pas retenir son atmosphère et sans elle, l’eau s’évapore. De plus, les rayons cosmiques et stellaires bombardent sa surface, la rendant carrément stérile.

1bb29fb84b_106480_mars-rouge-ok

Mais une planète trop grosse possède d’autres désavantages qui se rapportent à sa vitesse de libération ou, autrement dit, sa vitesse d’échappement. Cela correspond à la vitesse d’un véhicule spatial se libérant de l’attraction gravitationnelle de son astre. Cette vitesse dépend de la masse et du rayon de la planète.

La Terre possède une vitesse de libération d’environ 40 000 km/h. Pour une densité comparable à celle de la Terre, mais d’un rayon deux fois plus important, la vitesse de libération double également. Si l’exoplanète possède une plus forte densité, soit un rapport plus important de sa masse sur son volume, sa vitesse de libération augmentera d’autant.

755912398-登月火箭-土星五号-火箭发射-阿波罗计划

Pour atteindre la vitesse de libération, cela exige de consommer du carburant. Plus cette vitesse est importante, plus le carburant à embarquer à bord de la fusée doit être important. Le problème est qu’avec du poids supplémentaire, ça prend encore plus de carburant et la fusée pèsera encore plus lourd.

Ce cercle vicieux occasionne qu’avec une propulsion chimique, il existe une limite de vitesse de libération au-delà de laquelle, il devient impossible de lancer une fusée dans l’espace.

000_s562g_1-674473

Cela signifie que les peuples extraterrestres ne sont pas tous en mesure de visiter l’espace. Certains restent prisonniers de leur planète jusqu’à ce qu’ils puissent bénéficier d’une propulsion beaucoup plus efficace que les réactions chimiques.

On pourrait penser à des réactions nucléaires ou de la production d’énergie grâce à l’interaction matière-antimatière. Toutefois, le temps permettant de contrôler ces énergies plus exotiques empêcherait ces peuples d’envoyer des satellites et des sondes en orbite comme les humains le font depuis soixante ans uniquement grâce à des réactions chimiques bien ordinaires.

La planète Mars fait partie de celles ayant des dimensions trop petites pour préserver leur atmosphère. Dans l’autre extrême, les superterres actuellement connues risquent de piéger leurs habitants à leur surface tellement la vitesse de libération risque d’être trop importante.

correlation-exoplanetes

Le graphique montre les masses des exoplanètes connues par rapport à leur distance à leur étoile, le tout par rapport à la masse et à la distance de la Terre au Soleil. Les points bleus représentent les planètes de notre système solaire. Les points rouges, les exoplanètes connues à ce jour. Comme on peut le constater, la Terre, sa sœur Vénus et Mars semblent des exceptions dans la Galaxie, mais c’est seulement parce que détecter des planètes leur ressemblant s’avère bien plus difficile que de trouver des géantes gazeuses comme Jupiter ou Saturne. Nos moyens se raffinant et nos instruments scientifiques gagnant en précision et en acuité, bientôt les points rouges inonderont la région de ce graphique où les planètes rocheuses de notre système solaire se situent.

3468

Nous pouvons néanmoins nous féliciter de vivre sur une Terre suffisamment grosse pour retenir son atmosphère et ses océans sans toutefois souffrir d’embonpoint, une Terre au cœur de la zone habitable du Soleil, une Terre permettant aux fusées à propulsion chimique de lancer des satellites et des sondes partout dans son système solaire, une Terre à la mesure de notre curiosité et de nos ambitions présentes.

e-elt-3

Lorsque nous maitriserons d’autres types de propulsions beaucoup plus efficaces, nous aurons déjà plus d’un siècle d’expérience spatiale, d’envois de télescopes scrutateurs, de robots fouineurs, de sondes détectrices et d’humains déterminés. Nous serons prêts à entamer une nouvelle phase de notre parcours spatial, devenir un peuple galactique.

 

 

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Verra-t-on un trou noir en 2018 ? (1)

Est-ce que nous pourrons voir un trou noir très bientôt ?

Évidemment, la question aurait de quoi faire rire. Puisque le fond du cosmos est noir, regarder un trou noir sur un fond noir, c’est comme observer un corbeau dans un placard. Pourtant, il est possible de voir ce à quoi un trou noir ressemble en regardant ses effets sur son environnement.

Afin de répondre à la question initiale, j’aurai besoin d’expliquer succinctement différents concepts que je distribuerai dans des articles distincts.

Le premier article sera donc consacré à rappeler comment se forme un trou noir afin de comprendre sa nature.

Une étoile est un délicat équilibre entre deux forces antagonistes. Tout d’abord, une étoile, c’est une bombe nucléaire. La pression engendrée par la fusion nucléaire tend donc à disperser les constituants de l’étoile comme le fait n’importe quelle bombe nucléaire. Toutefois, puisqu’une étoile est aussi un agrégat important de matière, la gravitation retient la matière éjectable en la concentrant au centre de l’astre, ce qui maintient l’étoile en une sphère plutôt stable.

Une étoile est donc une sorte de balance à ressort qui retient le poids déposé sur son plateau en le repoussant jusqu’à un équilibre entre les deux.

resize.jpeg

Formation d’une étoile à neutrons

Cependant, le carburant nucléaire venant en fin de compte à manquer — et cela arrive d’autant plus rapidement que l’étoile est obèse — la pression des explosions nucléaires ne suffit plus à contrebalancer la force gravitationnelle qui comprime l’étoile. De ce combat singulier perdu d’avance, l’étoile finira par imploser sous son propre poids. Si elle possède suffisamment de matière, l’implosion réussira à vaincre les autres forces répulsives possibles dans la matière. Les électrons deviendront incapables de se repousser mutuellement (principe d’exclusion de Pauli) et finiront par s’écraser sur les noyaux des atomes. Ce faisant, les électrons fusionneront avec les protons du noyau pour former des neutrons. On obtient ainsi une étoile d’une densité extrême dont son cœur est entièrement composé de neutrons. Tous ces neutrons sont comprimés dans une sphère de 20 à 40 km de diamètre pour l’équivalent en poids d’une étoile de 1,4 à 3,2 fois la masse de notre Soleil. C’est dire comment la densité de la matière est importante ! Mais une étoile à neutrons n’est pas encore un trou noir.

Trop de matière pour résister

Si l’étoile à neutrons possède une masse supérieure à 3,2 fois celle de notre Soleil, ces particules neutres formant une espèce de noyau atomique géant seront elles aussi incapables de résister à la force gravitationnelle. Les quarks composant les neutrons atteindront leur limite de résistance et flancheront à leur tour.

8230235118_ae689ff1db_k

Formation d’un trou noir stellaire

À cette étape, il n’existe plus aucun autre mécanisme pouvant résister à la force gravitationnelle. La matière atteint alors sa limite d’existence et s’écrase en se concentrant un point infiniment petit. Le résultat est une singularité des équations de la relativité générale d’Einstein. Un point infiniment petit concentrant une masse de densité infiniment grande. Un trou noir est né.

Ouais, la physique n’aime pas trop les infinis et ces deux infinis du trou noir signifient qu’on a un « trou » dans notre théorie. Un trou noir de connaissances liées aux trous noirs qu’on ne parvient pas à éclaircir. Ironique, n’est-ce pas ? Cette formation des trous noirs se rapporte aux trous noirs d’origine stellaire, c’est-à-dire qu’une étoile est à l’origine du trou noir. Il atteint des masses maximales aux alentours de 14 fois celle de notre Soleil.

messier_106_multifrequence_hubble_galex_chandra_by_damylion-d7qoy0k

Trou noir galactique (supermassif)

Il existe aussi des trous noirs galactiques. Ce sont des trous noirs tapis au cœur de la plupart des galaxies. Leur origine est controversée, mais il est certain qu’ils ont cru en avalant de la matière environnante et par coalescence avec d’autres trous noirs. Le record est détenu par le trou noir supermassif de la galaxie NGC 4889 qui aurait un petit 21 milliards de fois la masse de notre soleil !

La Voie lactée, notre Galaxie, cache également un trou noir supermassif en son sein. Il deviendra important pour la suite de cet article. Toutefois, sa dimension reste modeste. Il a la taille plutôt fine à comparer à bien d’autres trous noirs en ne pesant que 4 millions de fois la masse de notre Soleil !

Dans le prochain article, j’expliquerai simplement ce qu’on appelle l’horizon des événements d’un trou noir. Cette notion est essentielle pour comprendre comment on peut observer un trou noir.

Je vous donne rendez-vous demain pour la suite de ce passionnant feuilleton et vous encourage entretemps à poser vos questions sous forme de commentaire.

À bientôt.

Nouvelle tentative ratée de prendre Einstein en défaut

La théorie de la relativité générale d’Einstein élaborée entre 1907 et 1915 est considérée comme étant la plus importante contribution d’un seul homme à la physique. Il reçut toutefois de l’aide de deux mathématiciens qui lui permirent de compléter son œuvre, Marcel Grossmann et David Hilbert. Cette théorie complexe nous présente un modèle sur la façon dont les objets déforment l’espace-temps pour, en contrepartie, faire bouger ces mêmes objets. Depuis, sa théorie tient bon contre tous les assauts, y compris les plus récents et les plus raffinés, dont l’expérience Microscope. Cette récente tentative cherche à prendre en défaut le postulat qu’a utilisé Einstein pour élaborer sa fameuse théorie.

Un postulat est une affirmation non démontrée servant de point de départ à l’élaboration d’une théorie. Dans le cas de la relativité générale, Einstein a postulé un principe d’équivalence entre lois physiques dans un référentiel tombant en chute libre dans un champ de gravitation et les lois physiques dans un référentiel inertiel.

On connait mieux la formulation suivante. Deux corps, quels qu’ils soient, tomberont de façon identique dans un même champ gravitationnel, peu importe leur masse ou leur densité.

L’expérience du satellite Microscope «Micro Satellite à traînée Compensée pour l’Observation du Principe d’Équivalence» consiste en deux cylindres imbriqués l’un dans l’autre faits de métaux différents, donc de densité différente. Si les deux cylindres tombent de façon identique dans le champ de gravitation, on ne constatera aucun changement dans leurs positions respectives. Dans le cas contraire, ils se déplaceront l’un par rapport à l’autre et le principe d’équivalence sera violé, mettant à mal la relativité générale, ce qui ouvrira la voie à établir une nouvelle théorie de la gravitation.

Pourquoi cette énième expérience sur le même sujet alors que toutes les précédentes se sont soldées par une confirmation du principe d’équivalence?

Tout d’abord, pour affiner les mesures puisque Microscope est cent fois plus sensible que les précédentes expériences. Une différence pourrait alors être perçue par des accéléromètres là où elle aurait échappé aux expérimentations moins précises.

L’autre raison est encore plus fondamentale. Les deux piliers de la physique actuelle se détestent mutuellement. La chromodynamique quantique et la relativité générale semblent décrire deux univers différents alors qu’elles font partie d’un seul et même monde, le nôtre. Pourquoi le comportement de la matière se modifie-t-il si drastiquement aux très petites et aux très grandes échelles, demeure un mystère total et très dérangeant.

Pourtant, les deux théories résistent jusqu’à présent aux multiples tentatives de plus en plus raffinées visant à prendre en défaut l’une ou l’autre, sinon les deux. La dichotomie actuellement observée agace, frustre et embête les physiciens qui n’y voient qu’un moyen de progresser vers une vérité cachée sous-jacente. Mais les deux édifices théoriques tiennent bon, malgré l’inventivité des expérimentateurs. Par exemple, le satellite Microscope a permis jusqu’à présent de vérifier le principe d’équivalence jusqu’à une sensibilité de 2 x 10-14 (0,00000000000002) et on espère améliorer cette sensibilité d’un facteur 20 d’ici peu (1 x 10-15).

Même si le principe d’équivalence reste toujours valide, cette expérience permettra d’éliminer d’autres théories concurrentes. Si, par contre, des différences commencent à apparaitre, la théorie des cordes (actuellement repoussée dans les cordes du ring) pourrait prendre du gallon puisqu’elle prédit une différence très faible entre la masse inerte (inertielle) et la masse grave (en champ de gravité).

Il est important de comprendre que toutes les théories ne sont qu’une modélisation de notre Univers et non une représentation exacte de ce qu’il est. Les nouvelles théories émanent des ambiguïtés des précédentes. Il n’est pas dit qu’un jour nous ayons réponse à tout à partir d’une seule théorie unifiée. Par contre, notre compréhension actuelle du comportement de notre monde ne nous satisfait aucunement, malgré notre capacité de prédiction permise soit par la relativité soit par la chromodynamique quantique. C’est comme demander à papa de nous répondre lorsqu’il est question de sujets d’ordre cosmique et à maman lorsqu’on discute d’atomes et de ses constituants. On rêve du jour où nos parents règleront leurs différents une fois pour toutes. Cela pourrait s’avérer impossible, mais jusqu’à présent, on a toujours réussi à trouver un terrain d’entente. C’est seulement lorsqu’on affine le sujet de conversation que de nouvelles différences apparaissent. Cette divergence actuelle résiste aux assauts de millions de théoriciens et expérimentateurs depuis près d’un siècle. Jamais nos efforts n’ont été aussi nombreux et perfectionnés dans le but de faire mentir la gravitation ou son adversaire composé des forces nucléaires faible et forte ainsi que de la force électromagnétique.

La schizophrénie dont est atteint le monde de la physique finira, espérons-le, à être un jour guérie. Pour ce faire, d’autres expériences devront être effectuées avec des moyens toujours plus ingénieux afin d’atteindre des degrés de précision inégalés.

Photo : europe1.fr