La fourmi, la guêpe et l’intrication quantique

Hier soir, j’ai été voir le film de superhéros «Ant-man et la Guêpe» produit par Marvel. Si vous n’avez pas encore visionné le film, soyez sans crainte de poursuivre votre lecture, je ne dévoile aucun punch.

Depuis que cette entreprise opère dans le cinéma, elle porte un soin jaloux à ses scénarios en évitant de tomber dans les pièges de la facilité qui amènent inexorablement d’autres maisons du genre à concevoir des tissus d’incohérences et des collections d’âneries. Marvel sait raconter des histoires en emmêlant allègrement à travers leurs multiples films les aventures que vivent leurs différents personnages. L’ensemble de la filmographie crée une grande saga qu’on peut suivre du premier film jusqu’au dernier.

Ant-Man-et-la-Guêpe-e1530473865333-906x445.jpg

Bien entendu, Marvel maltraite, triture, torture la science dans tous les sens, mais leurs films se consacrent au divertissement, pas au documentaire. Nous devons donc être en mesure de les regarder pour ce qu’ils prétendent être et éviter de leur en vouloir pour les libéralités prises à l’endroit des formules des lois naturelles.

Dans le cas de l’homme-fourmi, un principe physique simple qui n’est pas respecté est la masse volumique. Pensez à un cube de 10 cm de côtés. Il possède un volume de 1000 cm3 et supposons qu’il pèse 1 kg. Maintenant, doublons ses dimensions. Les côtés mesurent 20 cm, le volume passe alors à 8000 cm3. Quant à son poids, il atteint 8 kg. En doublant des dimensions linéaires, les volumes ainsi que les masses deviennent 8 fois plus importants. Dans cet exemple, pour soutenir un homme dont ses dimensions ont été doublées, des jambes proportionnelles ne supporteraient jamais le poids. Le même raisonnement fonctionne également en sens inverse, ça explique pourquoi les pattes des fourmis semblent si fines à leurs dimensions, mais beaucoup trop minces pour rester efficaces lorsqu’on amplifie la taille de l’insecte.

ant-man-2-ant-man-et-la-guepe-gif-5b3e5e4e2b2b1.gif

Mais ce n’est pas très grave puisque c’est du divertissement et on aime bien voir des créatures, des personnages et des objets se faire réduire ou agrandir tout en conservant leurs propriétés intrinsèques. Mais quelle est la limite au rapetissement? Dans le film «Ant-man et la Guêpe», ils vont jusqu’à la limite théorique, celle des particules élémentaires, celle du vide quantique.

Aujourd’hui, dans nombre de films, on s’approprie certains pans de la physique quantique sans nécessairement la respecter, mais ce ne sont que des divertissements. À mon avis, il est grandement temps d’en parler au quotidien après être restée tapie dans les placards durant tout un siècle. Évidemment, les étrangetés de cette physique se prêtent bien à créer autour d’elles d’autres bizarreries moins véridiques, mais on demeure toujours dans le monde du divertissement.

Il y a quelques jours, j’ai traité du principe cosmologique des ponts Einstein-Rosen qui a été utilisé dans le film de Marvel, «Thor — Ragnarok». Vous pouvez le lire dans mon article intitulé «Pont Einstein-Rosen». Dans la production cinématographique mettant en vedette le couple d’insectes, Marvel exploite cette fois-ci le concept d’intrication quantique pour engendrer une connexion télépathique entre deux cerveaux. Le producteur effleure aussi l’aspect de délocalisation quantique avec le personnage du Fantôme.

bande-annnce-ant-man-guepe-65219-1200x675

Très récemment, j’abordais exactement le sujet de l’intrication dans un article intitulé «Intrication et télépathie». Pourtant, je n’avais aucune espèce d’idée du scénario du film «Ant-man et la Guêpe» lorsque je l’ai rédigé. C’est à croire que je possède une certaine forme d’intrication quantique télépathique avec Marvel! Qui sait, ça me rapproche peut-être d’un autre degré de Scarlett?

Pont Einstein-Rosen

Chose promise, chose due. Voici la suite de l’article traitant d’intrication quantique.

Ne cherchez pas le pont Einstein-Rosen sur Google Maps, il ne traverse aucune rivière. Cependant, il traverse bien un espace entre deux lieux. Et quel espace!

Ces deux physiciens ont signé un article en 1935 alors que faisait toujours rage la polémique autour de la réalité de la physique quantique. À partir des équations de la relativité générale, ils montrèrent que certaines solutions créeraient un déchirement de l’espace-temps et une connexion possible entre deux feuillets distincts de l’espace-temps.

image-3

Le concept du trou de ver était né, un lien sous-jacent à travers deux points éloignés qui, si nous étions en mesure de l’emprunter, permettrait de court-circuiter le chemin normal. Ce raccourci spatio-temporel donnerait l’impression d’avoir franchi une grande distance en violant le sacro-saint principe de la vitesse limite dans le vide, mais il n’en est rien. Venant d’Einstein, rien de surprenant qu’il respecte son propre postulat.

Mais en quoi la physique quantique joue-t-elle maintenant dans ce principe astrophysique régi par la relativité générale? La physique de l’immensément petit a donné une façon de créer ce trou de ver entre deux endroits précis de l’espace et c’est grâce à l’intrication quantique.

1477053338

Intriquez une grande quantité de matière. Séparez ces particules en les plaçant à deux lieux de votre choix. On sait que l’intrication garde un lien fort entre ces éléments, peu importe la distance. Engendrez ensuite deux trous noirs en condensant la matière aux deux endroits. Voilà, un trou de ver est né, exactement là où vous le désiriez.

Si ce concept résout le problème de la création d’un trou de ver entre deux lieux distincts et prédéterminés, il reste cependant totalement infranchissable d’un côté vers l’autre puisque si on peut entrer dans un trou noir, on ne peut jamais en ressortir, soit en faisant demi-tour, soit en tentent d’emprunter celui situé droit devant.

maxresdefault-3

D’après le physicien théorique Leonard Susskind, professeur à l’université Stanford en Californie, il faut trouver quelque chose de plus élaboré, mais le principe de l’intrication quantique restera probablement une partie essentielle du processus qui permettra un jour d’engendrer un véritable pont Einstein-Rosen réellement franchissable.

7790673342_thor-et-brunce-banner-dans-thor-ragnarok

Dans le film Thor: Ragnarok, nos héros Thor et Hulk sont coincés à l’autre bout de l’Univers et doivent se rendre sans délai à Asgard. Bruce Banner reconnait un «pont Einstein-Rosen» et la bande de gros bras l’emprunte afin de traverser l’espace en un temps record. Les scripteurs ont eu l’intelligence de ne pas choisir deux trous noirs comme origines et débouchés de ce pont, desquels on ne peut échapper. Ils parlent plutôt d’un pont entre deux étoiles à neutrons.

agujero_negro 3.jpg

Je considère la construction de vrai pont Einstein-Rosen que nous pourrions un jour utiliser comme représentant l’ultime défi technologique de l’humain. Je crois sincèrement que si nous parvenons à continuer d’exister sans nous détruire, nous y arriverons et nous pourrons alors visiter une grande partie de notre Galaxie.

02899110b33a0040a7c5524d265e2c9b8fd7fa18_00.gif

Pour visiter le reste de notre Univers, les autres galaxies, on aura besoin d’un autre saut technologique, mais commençons par régler le cas du voyage intergalactique. Notre terrain de jeu viendra de s’agrandir bien suffisamment pour nous occuper pendant un bon milliard d’années.

Intrication et télépathie

En français, intrication signifie un enchevêtrement de choses, un fouillis complexe et difficile à démêler. En physique quantique, l’intrication est un état particulier que peuvent prendre des particules et elle représente certainement l’une des plus étonnantes particularités contre-intuitives de cette physique de l’élémentaire.

depositphotos_166179300-stock-video-quantum-entanglement-signals-in-the

Prenons deux électrons et faisons-les interagir de telle sorte qu’une des particularités de l’un soit liée à celle de l’autre. C’est plutôt facile à obtenir. Deux électrons sur une même orbitale «s» autour d’un noyau ne peuvent pas posséder un même moment cinétique orbital (spin) à cause du principe d’exclusion de Pauli.

Spini

Si le spin du premier va dans un certain sens, celui du second sera nécessairement dans le sens contraire. Ces deux électrons sont maintenant intriqués l’un à l’autre et tout changement du spin de l’un va nécessairement entrainer le changement du spin de l’autre. C’est normal, direz-vous, puisqu’ils partagent la même orbitale et vous vous souvenez que le principe d’exclusion de Pauli le défend.

Jusqu’ici, rien de compliqué à comprendre. Mais voilà où la physique quantique devient franchement bizarre. Séparons les deux électrons et envoyons-les à très grande distance l’un de l’autre, la distance que vous voulez. Faites-les s’associer à des noyaux, créez des liens chimiques, bref donnez-leur une existence propre.

ob_bb2cea_etanglement-quantique.jpg

Puis mesurez le spin du premier électron. Vous saurez alors que le spin du second sera nécessairement son inverse, peu importe là où il se retrouvera par rapport au premier. Ils sont à jamais intimement intriqués.

Il ne faut pas confondre l’intrication avec la complémentarité. Si vous possédez une paire de gants et que vous envoyez séparément dans des valises n’importe où dans le monde, si vous en ouvrez une et découvrez le gant gauche, vous saurez immédiatement que l’autre est celui de droite. Mais l’intrication est totalement autre chose puisqu’elle permet de changer un gant pour son contraire et l’autre se transformera lui aussi et instantanément, indépendamment de la distance entre les deux.

conf-einstein-relativite

Cela semble défier la vitesse limite de la lumière et Einstein a bien tenté de trouver une cause cachée à cet «effet fantomatique à distance», disait-il. Le grand homme avait tort. Des expériences menées après sa mort, dont celle du physicien français Alain Aspect en 1983, ont prouvé qu’il n’existait aucune cause cachée. L’intrication quantique existe bel et bien.

ASP00008-Alain-Aspect

Comment peut-on comprendre ce phénomène franchement bizarre? Une façon de donner à l’esprit une explication rationnelle est de se remémorer le fait qu’une particule élémentaire est également une onde. Celle-ci n’a aucune limite de distance puisqu’elle n’est pas localisée dans un lieu précis. Les deux électrons intriqués partagent cette même onde. En transformant les propriétés de l’un d’eux, l’autre ne peut faire autrement que de s’y conformer et de modifier sa même propriété pour que l’onde globale reste inchangée (fonction d’onde).

Cet effet quantique pourrait avoir une manifestation macroscopique. On sait qu’une mère et son bébé ont partagé une intimité qui aurait possiblement permis d’intriquer de la matière d’un à l’autre. Une fois l’intrication existante, des changements d’état chez l’un peuvent se transmettre instantanément chez l’autre, engendrant une transformation partagée. Cette intrication ne serait pas limitée aux mères et à leur enfant, mais à toute interaction humaine. Et voilà comment une physique moderne pourrait expliquer certains phénomènes ésotériques que cette même science décriait comme étant du pur charlatanisme.

télépathie.png

Toutefois, aucune preuve formelle n’a encore été apportée à cet effet, mais l’intrication quantique a donné aux physiciens une bonne raison de cesser de rire des théories autrefois considérées comme totalement absurdes puisqu’elles auraient violées toutes les lois de la Nature, oubliant au passage que cette dernière ne se pliait pas à leurs désirs et à leurs croyances. Toutefois, la télépathie ne serait pas une transmission entre deux esprits comme on est habitué à se l’imaginer, mais à un partage préexistant d’états quantiques.

Dans le prochain article, j’aborderai une théorie étonnante découlant de ce principe.

L’effet tunnel

Ne pensez pas à une expérience de mort imminente. L’effet tunnel dont je veux vous parler est quantique. Oui, je sais, c’est de la physique, mais il n’est pas nécessaire de la craindre puisque celle-ci fait bien partie de nos existences.

D’emblée, je m’inscris en faux face à la métaphore du tunnel puisque celle-ci crée une mésinterprétation de cet effet. Rappelez-vous plutôt la représentation du potentiel de Diablo dans la série des X-Men. Il donne en partie un meilleur aperçu du phénomène, mais là encore avec des imprécisions.

nighcrawler

Prenez une personne normale devant une enceinte faite de briques de trois mètres de hauteur et demandez-lui d’atteindre l’intérieur du périmètre. L’individu aura beau tourner autour, le mur reste partout présent, l’empêchant de se rendre de l’autre côté puisqu’il ne possède pas le potentiel nécessaire pour franchir cette hauteur.

En physique quantique, une particule, c’est aussi une onde. Il n’est donc pas impossible pour celle-ci de se retrouver au-delà d’une barrière sans avoir eu à la traverser puisque son existence est «étalée» à certains moments et peut reprendre des attributs particulaires à d’autres.

hqdefault

Lorsque sa présence est étalée et que la particule se comporte comme une onde, la barrière, une bande interdite, n’apparait plus comme étant infranchissable puisqu’on peut dire qu’une partie d’elle-même se trouve déjà au-delà de cet obstacle. Si la particule se cristallise dans la portion où elle existe potentiellement de l’autre côté du mur, elle aura donné l’impression d’avoir franchi ce mur.

En fait, le corpuscule ne «traverse» jamais l’obstacle, dans le sens où on l’entend normalement, qui reste infranchissable. Elle n’a pas suivi un trajet entre l’extérieur et l’intérieur de l’enceinte. Elle se retrouve simplement évanescente, avec une probabilité de se cristalliser dans une portion d’espace beaucoup moins probable, mais non nulle qui se trouve au-delà de la barrière se dressant devant elle.

fd1cf65576_121393_microscope-effet-tunnel-ibm-almaden-visualization-lab

Utilisez un nombre phénoménal de particules élémentaires s’entassant devant un mur, aussi haut soit-il, une quantité non négligeable de celles-ci franchiront l’obstacle parce que leur mode d’existence l’autorise.

s1

Mais à quoi peut bien servir cet effet tunnel? Un seul exemple, il en existe des centaines. Dans tout appareil électronique se trouve un système permettant de maintenir une tension électrique continue, fixe et stable. C’est la partie «alimentation». Cette tension est souvent obtenue à partir d’une diode dont ses propriétés «tunnel» ont été accrues par un dosage d’impuretés chimiques. On l’appelle «diode Zener». Il reste ensuite à amplifier sa puissance pour alimenter tout un appareil, comme un téléphone intelligent, en tension stable qu’une batterie seule ne possède pas.

 

Voilà comment la physique quantique existe en permanence au bout de nos doigts et n’est pas qu’une curiosité «métaphysique» seulement utile à rendre les esprits tordus et illogiques, malgré ses aspects tordus et illogiques.

00-phone.jpg

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Verra-t-on un trou noir en 2018 ? (3)

J’ai entendu votre question et je vous réponds d’entrée de jeu, la réponse est non! Il n’existe aucune photo de l’horizon d’un trou noir nulle part sur Terre. Toutes sont des illustrations d’artiste ou des dessins créés par ordinateur à partir des formules mathématiques tirées de la théorie de la relativité générale d’Einstein. Par contre, ça pourrait changer dès cette année.

black-hole

Poursuivons maintenant notre aventure entreprise avant-hier et hier en présentant quelques concepts astronomiques. Si on veut obtenir une photo d’un horizon d’un trou noir, il faut quand même comprendre comment on pourrait y arriver. Vous verrez qu’il ne suffit pas de relier un iPhone à un télescope.

Tout d’abord, différencions deux concepts des instruments d’optique, leur sensibilité et leur résolution.

La sensibilité dépend dans un premier temps de la qualité du détecteur à transformer les photons en signal électrique. Attachez une patate à un télescope, vous n’obtiendrez pas la photo d’un champ de patate. Ensuite, il y a le nombre de photons qui seront amenés au détecteur. Cette quantité dépend de la taille du télescope, ce qu’on appelle la surface collectrice du miroir principal. Enfin, pour augmenter le nombre de photons, le télescope visera le même point du ciel le plus longtemps possible.

Disque_d'Airy_03

La résolution définit la capacité de l’instrument à différencier deux éléments l’un de l’autre. Elle dépend du nombre de pixels du détecteur, de la fréquence à détecter et aussi de la parallaxe.

La parallaxe est l’angle maximal formé par deux points de la surface collectrice. Plus le diamètre du télescope est grand, plus l’angle sera important et plus son pouvoir de résolution sera important. Un grand miroir aura donc deux avantages. Il collectera plus de photons et il aura un pouvoir de résolution plus important.

Toutefois, aucun télescope terrestre ou spatial n’a la résolution nécessaire pour voir les détails des effets optiques occasionnés par les trous noirs connus, même ceux du petit monstre supermassif caché au centre de notre Galaxie. Peut-on attendre la mise en service en 2025 du télescope E-ELT de 39 mètres de diamètre, mais là encore, sa résolution serait beaucoup trop faible.

Artist’s impression of the European Extremely Large Telescope

Qu’à cela ne tienne! Les astronomes sont des petits futés et ils ont pris la définition de la résolution d’un instrument optique au pied de la lettre. S’il faut augmenter la parallaxe pour améliorer le pouvoir de résolution, il suffit de prendre deux télescopes au lieu d’un seul et de leur faire regarder le même objet en même temps afin de créer un télescope virtuel de meilleure résolution.

Différentes solutions ont été mises de l’avant, dont certaines plus simples, d’autres plus complexes. La plus simple est le concept des jumelles, c’est le cas du BLT (Binary Large Telescope).   

1200px-LargeBinoTelescope_NASA

Pour des télescopes indépendants, il faut trouver le moyen de traiter les signaux reçus par les deux engins pour les faire correspondre exactement dans le temps. On parle alors d’interférométrie. Une fois encore, deux solutions existent. Les interféromètres couplés localement, comme le VLT. Possédant 4 gros et 4 petits télescopes, il est possible de simuler un télescope de 200 mètres de diamètre.

eso0111f

Mais encore là, c’est beaucoup trop peu pour espérer voir l’horizon d’un trou noir. Ça prendrait un télescope au moins des dimensions… de… de… la Terre. Et c’est là qu’ils ont créé le EHT (Event Horizon Telescope). Ce n’est pas un nouveau télescope, mais un protocole d’utilisation d’un réseau de neuf télescopes existants répartis un peu partout sur la planète, y compris au Groenland et en Antarctique. Son diamètre virtuel définissant sa capacité de résolution est de près de 15000 km.

w453-81281-ehtimagehighres

Une première session photo s’est déroulée en avril 2017 et les résultats sont à l’étape du traitement qui pourrait se terminer d’ici la fin de l’année 2018. Ce sont des pétaoctets de données à traiter avec des difficultés énormes, d’où le délai entre la prise photo et le résultat final.

Demain, quelques questions – réponses sur le sujet.

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Verra-t-on un trou noir en 2018 ? (1)

Est-ce que nous pourrons voir un trou noir très bientôt ?

Évidemment, la question aurait de quoi faire rire. Puisque le fond du cosmos est noir, regarder un trou noir sur un fond noir, c’est comme observer un corbeau dans un placard. Pourtant, il est possible de voir ce à quoi un trou noir ressemble en regardant ses effets sur son environnement.

Afin de répondre à la question initiale, j’aurai besoin d’expliquer succinctement différents concepts que je distribuerai dans des articles distincts.

Le premier article sera donc consacré à rappeler comment se forme un trou noir afin de comprendre sa nature.

Une étoile est un délicat équilibre entre deux forces antagonistes. Tout d’abord, une étoile, c’est une bombe nucléaire. La pression engendrée par la fusion nucléaire tend donc à disperser les constituants de l’étoile comme le fait n’importe quelle bombe nucléaire. Toutefois, puisqu’une étoile est aussi un agrégat important de matière, la gravitation retient la matière éjectable en la concentrant au centre de l’astre, ce qui maintient l’étoile en une sphère plutôt stable.

Une étoile est donc une sorte de balance à ressort qui retient le poids déposé sur son plateau en le repoussant jusqu’à un équilibre entre les deux.

resize.jpeg

Formation d’une étoile à neutrons

Cependant, le carburant nucléaire venant en fin de compte à manquer — et cela arrive d’autant plus rapidement que l’étoile est obèse — la pression des explosions nucléaires ne suffit plus à contrebalancer la force gravitationnelle qui comprime l’étoile. De ce combat singulier perdu d’avance, l’étoile finira par imploser sous son propre poids. Si elle possède suffisamment de matière, l’implosion réussira à vaincre les autres forces répulsives possibles dans la matière. Les électrons deviendront incapables de se repousser mutuellement (principe d’exclusion de Pauli) et finiront par s’écraser sur les noyaux des atomes. Ce faisant, les électrons fusionneront avec les protons du noyau pour former des neutrons. On obtient ainsi une étoile d’une densité extrême dont son cœur est entièrement composé de neutrons. Tous ces neutrons sont comprimés dans une sphère de 20 à 40 km de diamètre pour l’équivalent en poids d’une étoile de 1,4 à 3,2 fois la masse de notre Soleil. C’est dire comment la densité de la matière est importante ! Mais une étoile à neutrons n’est pas encore un trou noir.

Trop de matière pour résister

Si l’étoile à neutrons possède une masse supérieure à 3,2 fois celle de notre Soleil, ces particules neutres formant une espèce de noyau atomique géant seront elles aussi incapables de résister à la force gravitationnelle. Les quarks composant les neutrons atteindront leur limite de résistance et flancheront à leur tour.

8230235118_ae689ff1db_k

Formation d’un trou noir stellaire

À cette étape, il n’existe plus aucun autre mécanisme pouvant résister à la force gravitationnelle. La matière atteint alors sa limite d’existence et s’écrase en se concentrant un point infiniment petit. Le résultat est une singularité des équations de la relativité générale d’Einstein. Un point infiniment petit concentrant une masse de densité infiniment grande. Un trou noir est né.

Ouais, la physique n’aime pas trop les infinis et ces deux infinis du trou noir signifient qu’on a un « trou » dans notre théorie. Un trou noir de connaissances liées aux trous noirs qu’on ne parvient pas à éclaircir. Ironique, n’est-ce pas ? Cette formation des trous noirs se rapporte aux trous noirs d’origine stellaire, c’est-à-dire qu’une étoile est à l’origine du trou noir. Il atteint des masses maximales aux alentours de 14 fois celle de notre Soleil.

messier_106_multifrequence_hubble_galex_chandra_by_damylion-d7qoy0k

Trou noir galactique (supermassif)

Il existe aussi des trous noirs galactiques. Ce sont des trous noirs tapis au cœur de la plupart des galaxies. Leur origine est controversée, mais il est certain qu’ils ont cru en avalant de la matière environnante et par coalescence avec d’autres trous noirs. Le record est détenu par le trou noir supermassif de la galaxie NGC 4889 qui aurait un petit 21 milliards de fois la masse de notre soleil !

La Voie lactée, notre Galaxie, cache également un trou noir supermassif en son sein. Il deviendra important pour la suite de cet article. Toutefois, sa dimension reste modeste. Il a la taille plutôt fine à comparer à bien d’autres trous noirs en ne pesant que 4 millions de fois la masse de notre Soleil !

Dans le prochain article, j’expliquerai simplement ce qu’on appelle l’horizon des événements d’un trou noir. Cette notion est essentielle pour comprendre comment on peut observer un trou noir.

Je vous donne rendez-vous demain pour la suite de ce passionnant feuilleton et vous encourage entretemps à poser vos questions sous forme de commentaire.

À bientôt.

Défauts inhérents à la téléportation

En physique, on considère que l’information est soumise aux lois de la théorie quantique. Elle est donc soumise à un principe fondamental de cette théorie qui est l’incertitude.

Pour rappeler ce qu’est le principe d’incertitude — ou d’indétermination — de Heisenberg, il stipule qu’il est impossible de connaitre avec une précision absolue deux propriétés complémentaires d’un même système quantique comme, par exemple, la vitesse et la position. Et quand j’écris impossible, ce n’est pas une figure de style, c’est une vérité absolue et incontournable.

5ff908d9ec_109424_photon-intrication-iqoqi-vienna-austrian-academy-of-sciences

Il est donc impossible de cloner une particule élémentaire à cause de cette imprécision systémique. On peut la copier avec un certain degré de précision qui ne sera jamais parfait.

Ce concept fait en sorte que si un jour vous étiez téléporté, votre copie ne serait pas un clone de vous-même, mais une copie quelconque ayant la fiabilité relative à la précision des mesures que le système de téléportation aurait pu prendre de tous vos constituants.

L’autre problème de la téléportation est le concept de la destruction de l’original. On imagine souvent la téléportation comme un système de transport. C’est totalement faux. Les corps ne voyagent pas d’un endroit à un autre.

640px-Military_laser_experiment.jpg

Les informations de chacune de vos particules composant votre corps sont lues par un scanner qui les détruit durant ce processus. Le système emmagasine les informations pour ensuite les transporter d’un point à un autre par un moyen classique de transmission d’informations pour ensuite reconstituer un corps à destination à partir de la matière environnante.

Les informations de chacun de vos plus petits constituants sont donc copiées plus ou moins précisément, mais jamais totalement ni parfaitement. Imaginez alors la téléportation comme une tentative de reconstitution d’un original à partir d’une photocopie.

Tout le monde a déjà photocopié une photocopie d’une photocopie avec le résultat qu’on connait. La téléportation nous assure qu’il ne pourra jamais en être autrement. Jamais un original ne restera un parfait original une fois la téléportation effectuée, même avec le plus parfait des systèmes mis en place.

7784147744_chris-pine-alias-le-capitaine-kirk-dans-star-trek-sans-limites

Alors, cessez de fantasmer sur le capitaine Kirk. Avoir été téléporté un nombre aussi impressionnant de fois, aujourd’hui vous ressembleriez probablement plus à un blob qu’à un humain.

http---i.huffpost.com-gen-1349204-images-n-BLOBFISH-628x314.jpg

L’observation perturbante

Vous êtes-vous déjà senti observé sans raison apparente, sans voir votre observateur ? Ça m’est arrivé à quelques reprises pour avoir su par la suite que j’avais eu raison de m’être senti observé. C’est un sentiment étrange et très fort. J’ai déjà raconté une anecdote sur ce sujet en rapport avec des loups. Ça m’est aussi arrivé avec des humains.

La physique quantique, celle qui régit les plus petits constituants de la matière, a mis en lumière un élément clé. Il est impossible d’observer des particules sans les perturber. L’observation fait partie intégrante de tout système quantique. Ainsi, ces particules soumises à notre observation réagissent différemment avec ou sans système d’observation.

44290e15bfc8e4a27e9c1633c5732579_L.jpg

En réalité, ce comportement est normal sans avoir besoin d’aller dans le quantique. Lorsqu’on mesure une tension électrique avec un voltmètre, celui-ci possède une impédance qui n’est pas infinie. Il dévie donc une partie du courant et fait légèrement chuter la tension qu’on espère connaitre. La mesure affecte la réalité puisque sans voltmètre, elle vaut x et avec le voltmètre, elle vaut x – a. Il est donc impossible de mesurer une tension sans l’affecter.

C’est aussi la raison pour laquelle les animaux ne réagissent pas de la même façon lorsqu’on les observe en les laissant tranquilles et qu’on les observe uniquement à partir de caméras. Encore faut-il que nous émettions l’hypothèse qu’ils ignorent leur présence et leur fonction.

1507999-dernieres-donnees-onu-indiquent-canada

Les Casques bleus de l’ONU en ont également une bonne idée. Observer perturbe le fonctionnement normal, réduisant ainsi les risques d’abus des autorités ou des rebelles. Leur rôle pacifiste n’est pas inutile, du moins dans la majorité des cas.

Observer ses enfants, ses ados, ne constitue donc pas un acte anodin. Parfois ils voudraient nous voir disparaitre, ça retient alors quelque peu leur fougue.

Placer des caméras de surveillance bien en vue n’a pas seulement pour but de capter des délits et ses auteurs, mais surtout de les empêcher.

Camera-video-surveillance-16.jpg

Ce concept de la mesure perturbante est fondamental pour comprendre différents mécanismes, tant physiques que psychologiques.

Même si parfois on veut observer sans être surpris, ça ne fonctionne pas toujours et rarement sur une longue période. On a alors besoin d’éloigner son système de surveillance de la cible et c’est ainsi qu’on se retrouve avec des satellites-espions ou des drones.

Souriez, on vous observe !

Image : theblackvault.comouterplaces.comlapresse.cacamera-surveillance.biz

Le vide et l’information

Ce n’est pas la première fois que j’en parle, on y arrive tranquillement, graduellement, une brique à la fois. À quoi, demandez-vous? À la preuve que nous vivons dans un monde informatique, que l’Univers est une simulation numérique, à lire dans Pour la Science ainsi que dans Esprit Science Métaphysiques et sur Radio-Canada. Les liens suivants vous amènent vers mes deux précédents articles dans lesquels j’abordais ce sujet. Univers et simulation et L’utilité véritable d’un trou noir.

Au début du XXe siècle, un pas de géant s’effectue en science avec l’élaboration de la physique quantique, l’une des deux théories qui après un siècle gardent encore toute leur pertinence. La seconde est la physique relativiste.

space-time-at-planck-length-vibrating-at-speed-of-light-due-to-heisenberg-uncertainty-principle-jason-padgett.jpg

Depuis ce temps, on sait qu’il existe des dimensions limites indivisibles, comme des atomes d’espace. Un cube d’espace fondamental appelé «espace de Planck» mesure environ 10-105 mètre cube.

Il existe également des atomes de temps qu’on nomme «ère de Planck» et qui valent 10-43 seconde. Il est donc impossible de savoir ce qui s’est passé au plus près du Big Bang sous cet atome temporel.

speed_of_light.jpg

On sait également, preuves expérimentales à l’appui que le vide n’est pas vide. J’en ai déjà parlé dans un autre article. Ce qu’on appelle le vide n’est pas le néant. S’il existe de l’espace, ce n’est pas rien. Ce faux vide est plein d’énergie et s’il possède de l’énergie, il possède de la matière qui se crée spontanément à partir de cette énergie.

Et voilà la dernière brique que la science fondamentale vient de rajouter dans l’équation, le vide serait constitué, non seulement d’énergie, mais aussi d’information.

On pouvait émettre cette hypothèse depuis les travaux de Ludwig Boltzmann, dont j’ai également brièvement parlé sur ce blogue, en y ajoutant le concept des unités de mesure fondamentales de Planck.

L’Univers, même vide de toute matière, serait quand même constitué de briques fondamentales d’information et on peut facilement imaginer qu’elle s’alimente à partir de l’énergie du vide.

DSC-B1216_01b

Tout ceci constitue un puzzle dont toutes les pièces se mettent en place les unes après les autres pour finalement apporter la preuve que nous sommes des constituants calculés, mais ayant de multiples degrés de liberté. Il ne faut pas croire que les programmes informatiques amènent des résultats nécessairement prédéterminés qui feraient que tout l’avenir serait décidé à partir du moment où l’ordinateur Universel commence à exécuter lesdits programmes, en l’occurrence à partir du Big Bang.

Ce qu’il faut surtout retenir, c’est le principe que l’Univers est information au sens informatique du terme, c’est-à-dire une information ayant des constituants de base indivisibles, comme le bit est celui de notre société technologique actuelle.

Je cite le scientifique Trhnh Xuan Thuan « Le vide est la matrice de tout » à lire dans Science et Avenir.

Photos : http://irfu.cea.frhttp://discovermagazine.com/; https://fineartamerica.comhttp://bigthink.com.

La Vie

Une Terre unique ou banale ?

On se pose encore la question à savoir si la vie existe ailleurs que sur Terre. Évidemment, ce qui surviendra très bientôt ressemblera à ce qui est advenu à nos questionnements concernant les exoplanètes. Existe-t-il d’autres planètes dans l’Univers ? Cette question qui nous tarabustait voilà encore peu de temps nous semble aujourd’hui bien innocente alors que 3 572 exoplanètes sont confirmées. Il en sera de même avec l’existence de la vie dans l’Univers. Nous nous trouverons bien prétentieux et certainement aussi naïfs d’avoir osé croire, même un seul instant, que nous vivons sur une planète unique et que la vie n’existe que sur Terre.

Ordinaire ou extraordinaire ?

Mais tant que la preuve formelle n’est pas apportée, on préfère penser que l’humain est spécial. Si nous étions parvenus à créer de la vie en laboratoire, la question de la vie dans l’Univers aurait obtenu réponse, mais on fait face à un paradoxe. La vie se trouve presque partout sur Terre et même à des endroits tellement étranges que nous n’aurions jamais été la chercher dans ces milieux. Bon, c’est probablement comme réussir un soufflé… en plus compliqué. Ça prend les bons ingrédients et il nous en manque peut-être un dernier auquel nous n’avons pas encore pensé. Ça prend aussi le bon livre d’instructions et à ce chapitre, on n’a aucun professeur pour nous l’enseigner. Ça prend peut-être aussi plus de temps, la vie est certainement moins pressée que nous de venir au monde.

Une ironie de plus, la spontanéité

Voilà un peu plus de cent ans, on croyait encore que la vermine naissait spontanément en présence de viande. Pour prouver le contraire, les scientifiques ont laissé de la viande sous des cloches en verre et aucune mouche, aucun ver, ni aucune souris ne voyait le jour. La preuve était faite, la vie ne naissait pas de l’inerte. On attribuait la vie à la volonté divine. Aujourd’hui, les scientifiques cherchent à prouver le contraire, que la vie peut émerger de matières inertes et qu’elle n’est pas due à un acte délibéré posé par une quelconque divinité.

Le berceau idéal

À partir des plus anciennes preuves de vie sur Terre, l’humain cherche à retrouver le milieu originel qui l’a fait naitre. Avec la bonne température, la bonne pression, les bons ingrédients, le bon bombardement d’ondes ou de particules, la vie pourra peut-être se décider à nous faire plaisir. Les chercheurs veulent reproduire le milieu le plus probable d’engendrer la vie en fouillant les stromatolites primordiaux et autres vieilles roches ayant conservé les plus vieilles traces de vie primitive.

Horreur du vide et probabilités

Ayant subi dans le passé cinq extinctions massives de vie, la Terre s’en est toujours remise par un foisonnement de vies tous azimuts qui ont rempli assez rapidement les niches écologiques laissées vides par leurs précédents résidants. La Nature a donc horreur du vide de vie. C’est donc un signe encourageant que la présence de vie n’est pas fortement improbable, mais au contraire, fortement probable.

L’analogie

Les précédents paragraphes me font tout de suite penser à un autre domaine où la spontanéité, l’horreur du vide et les probabilités représentent les briques essentielles de cette science. Je parle de la physique quantique. Ce rapprochement m’a amené à postuler que la création de la vie se comporte peut-être exactement comme la création spontanée de matière à partir du vide afin de se conformer au principe d’incertitude de Heisenberg (inégalité de Heisenberg). Il pourrait ainsi exister le même type d’inégalité à propos de la Vie. Une inégalité obligeant la Nature à faire apparaitre de la vie là où elle n’existe pas, spontanément, selon un rythme déterminé par le milieu ambiant.

Et si c’était plus qu’une analogie ?

Il est même tentant de lier l’émergence de la Vie à des phénomènes quantiques, pas seulement par analogie, mais découlant directement de ceux-ci. Cette relation directe causerait la nécessité d’avoir un Univers régi par la physique quantique pour que la Vie puisse exister. Ainsi, toutes les aberrations de cette physique contre-intuitive prendraient une raison essentielle d’exister. On comprendrait mieux le combat qui l’oppose aux lois cosmologiques pour le contrôle de l’Univers, car sans l’un ou l’autre, pas de création de vie et pas d’évolution possible de celle-ci.