Un trou noir dans le système solaire ?

Bon ! Bon ! Les grands mots sont lancés ! On peine à trouver la fameuse planète 9, aussi connue sous les noms planète X, Nibiru, etc., beaucoup de noms pour un objet toujours hypothétique !

Toutefois, les hypothèses se raffinent et les probabilités concernant la présence d’une autre planète dans notre système solaire continuent de croitre. Aujourd’hui, peu d’astronomes raillent du sujet contrairement à il y a vingt ou même dix ans. Ce ne sont plus les apôtres du Nouvel Âge qui parlent, ce sont de très sérieux scientifiques équipés de superordinateurs afin d’appuyer leurs prétentions.

Ils ne peuvent pas expliquer certaines perturbations d’objets lointains dans le système solaire autrement que par une planète qui voyagerait à ses confins. Une planète d’une dizaine de fois la masse de la Terre. Une planète à l’orbite très excentrique. Une planète dont la révolution autour du Soleil durerait quelques dizaines de milliers d’années et, comble de malchance, se situerait actuellement à son aphélie à 150 milliards de kilomètres, le point de son orbite le plus éloigné du Soleil et de nous par conséquent. En comparaison, la Terre est mille fois plus proche du Soleil que ne le serait actuellement ce fameux objet perturbateur transneptunien.

Ciel-nocturne-2

La ceinture de Kuiper se situe au-delà de Neptune et abrite des astéroïdes et des planètes naines. L’une d’elles ne vous est pas inconnue puisque c’est Pluton. Deux autres ont été repérées, elles portent les noms de Makemake et d’Haumea. Au-delà de cette ceinture rocheuse, on observe une baisse importante et anormale de leur nombre surnommée le précipice Kuiper (Kuiper Cliff). Cette absence de cailloux dans cette région intrigue les astronomes. De plus, on observe plusieurs corps de la ceinture se comportant anormalement. En mettant bout à bout tous ces indices, on obtient la probabilité qu’une planète se promène effectivement dans cette région.

Grâce aux ordinateurs et aux lois de la physique qui les alimentent, on parvient à estimer la masse, l’orbite et la position actuelle de cette hypothétique planète. Évidemment, tous ces calculs ne peuvent être qu’approximatifs, mais si on veut la trouver, il faut bien braquer nos télescopes dans une direction où les probabilités de voir l’objet sont optimales.

Malheureusement, malgré tous les moyens mis de l’avant jusqu’à présent pour la dénicher, rien à faire. On a beau observer avec les plus puissants télescopes, Nibiru reste introuvable là où l’on pense qu’on devrait la voir.

Son existence est donc régulièrement remise en question, mais les perturbations dans la ceinture de Kuiper doivent s’expliquer et pour le moment, on ne voit aucune autre explication plus convaincante que celle de la planète X.

kepler

Or, par déduction logique, si une planète est présente et si on ne parvient pas à la voir alors que nos télescopes en seraient capables, ce n’est pas parce qu’elle n’existe pas, mais parce qu’elle serait inobservable. Et l’on connait une certaine classe d’objets célestes véritables et inobservables, ce sont les trous noirs.

Mais il y a un gros hic. On connait avec certitude deux types de trous noirs. Le trou noir stellaire, généré par une étoile s’étant transformée en supernova. Les restants de cette explosion forment un trou noir lorsque la masse résiduelle est suffisante. Les plus petits trous noirs stellaires frisent 3 fois la masse solaire. C’est bien plus qu’un trou noir de seulement quelques fois la masse terrestre. L’autre trou noir connu est supermassif, des milliers, des millions voire des milliards de fois la masse solaire.

Alors, imaginer un trou noir de seulement quelques masses terrestres n’est pas anodin puisque aucun phénomène connu actuel ne peut en générer d’aussi légers. Observer la planète X si elle était un trou noir serait impossible puisqu’il ferait seulement une vingtaine de centimètres de diamètre et il serait évidemment totalement noir.

Alors d’où proviendrait cet objet minuscule et hyper massif ? On pense que des petits trous noirs auraient été créés tout au début de l’existence de l’Univers, juste après le big bang. L’hypothèse n’est pas nouvelle puisque les conditions permettant leur formation pouvaient exister à cette époque préstellaire. Il se pourrait même que ces objets, les plus gros d’entre eux, aient été à l’origine de la création des galaxies et la raison pour laquelle chacune d’entre elles possède aujourd’hui en son centre un trou noir supermassif. Les granules originelles auraient cru jusqu’à devenir géantes grâce à l’accrétion graduelle de matière. Toutefois, la grande majorité des trous noirs minuscules continueraient de peupler les galaxies et l’un d’entre eux orbiterait dans notre propre système solaire. L’hypothèse est intéressante mais exotique. C’est pourquoi il faut passer en revue toutes les autres possibilités avant de se rabattre sur cette dernière.

La suite est excitante puisque nous pourrions prouver simultanément l’existence d’un corps perturbateur en orbite lointaine ainsi que ces fameux trous noirs primordiaux jamais encore détectés.

Le problème actuel est celui de la quantité de données disponibles. Nos observations de qualité sont trop récentes pour bâtir une hypothèse robuste. Plusieurs années à récolter de nouvelles données devraient permettre d’y voir plus clair. 

Une autre possibilité est qu’il existe non pas une, mais deux planètes éloignées. Ainsi, actuellement nous déduirions la position médiane située entre les deux corps et on ne verrait que le vide, raison des insuccès actuels de nos observations par télescopes.

Ce scénario me plait. Il ne fait pas intervenir d’objets exotiques hypothétiques et il aurait l’avantage de faire cesser la tergiversation entre les noms planète 9 et planète X, chacune s’accaparant l’un d’eux.

L’image du trou noir

Ça y est, l’équipe de l’EHT y est enfin parvenue. Une image réelle d’un trou noir supermassif a été rendue publique après d’importants délais sur l’échéancier initial. Vous l’avez probablement vue, elle orne également le sommet de cet article. Elle s’est répandue comme une trainée de poudre pour rapidement faire le tour de la planète. Je suspecte seulement la tribu amazonienne de la vallée de la rivière Javary ou celle de l’ile North Sentinel en mer d’Andaman de l’avoir ratée. À part ça, tout le monde en a entendu parler.

Des exploits technologiques multiples et sensationnels ont permis ce tour de force pourtant assez prévisible, car malgré le succès de la mission, malgré l’exotisme de cette image, l’équipe n’a finalement que très peu prouvé de choses qu’on ne savait déjà.

En fait, cette image ne prouve rien de nouveau ou de différent, pas même l’existence des trous noirs. Nous sommes si conditionnés à croire aux seules preuves visuelles qu’on ignore que les vraies preuves de l’existence de ces monstres stellaires ont été récoltées depuis un certain temps sous d’autres formes. Mais voir, c’est croire et l’équipe de l’EHT a profité de notre façon primitive d’aborder la vérité pour réaliser un événement médiatique planétaire.

Les gens formant cette équipe savaient exactement là où pointer leurs instruments afin de réaliser cette image. Ils connaissaient déjà avec certitude l’existence de ce monstre supermassif au centre de la galaxie M87. Et non seulement ils connaissaient son existence, ils connaissaient également sa position exacte, sa masse (6,5 milliards de fois la masse de notre Soleil) et ses dimensions précises. Donc, du point de vue strictement scientifique, ils n’ont absolument rien découvert.

Nous connaissons cet étrange phénomène cosmique qu’est le trou noir depuis plus d’un siècle. C’est bien Albert Einstein qui, en élaborant sa formule de la relativité générale, a permis de comprendre comment les trous noirs pouvaient exister. Cependant, contrairement à bien des déclarations faites en ce sens, le grand homme ne les a jamais prédits. C’est un dénommé Karl Schwarzschild qui a résolu les équations pour une étoile et qui a découvert qu’en deçà d’un certain rayon, la gravitation génère un espace temps si courbe qu’il crée une singularité, un point de densité infinie dans un rayon nul. Einstein croyait en ses équations, mais pas aux trous noirs. D’après lui, la Nature possédait un mécanisme qui devait empêcher ces anomalies d’apparaitre. Il avait tort puisque les trous noirs existent bel et bien.

D’ailleurs, il faut savoir que cette image ne montre pas du tout un trou noir. Stricto sensu, un trou noir est un point infiniment petit et parfaitement noir de surcroit. Donc personne ne photographiera jamais un véritable trou noir. Mais alors, que montre cette foutue image si ce n’est pas un trou noir? Elle montre les effets causés par un point infiniment dense sur son environnement. Le trou noir est donc bien là, mais c’est un point plus que microscopique tapi au cœur de toute cette sphère noire environnante.

Et cette partie noire dans l’image, ce n’est pas le trou noir? Non. Ce noir n’est même pas un objet, ce n’est que du vide entourant le trou noir qui, je le répète, est infinitésimalement petit. Cette région noire est occasionnée par deux phénomènes créés, évidemment, par la présence d’un trou noir. La partie la plus centrale, environ le tiers du rayon, c’est ce qu’on appelle l’horizon du trou noir, ou l’horizon des événements. Tout ce qui s’approche d’aussi près du centre ne pourra jamais échapper à son attraction gravitationnelle, pas même de la lumière. C’est pourquoi la noirceur de cette sphère est totale et absolue et est d’autant plus grosse que le trou noir central possède une masse importante. La partie noire plus externe, on l’appelle, à tort, l’ombre ou l’ombrage du trou noir. On ne voit pas de démarcation entre les deux zones noires. Je dis «à tort» puisqu’un point infiniment petit ne peut faire qu’une ombre infiniment petite. On aurait été plus avisé d’appeler cette zone «la démarcation» du trou noir.

Le halo orange autour de la zone noire est son disque d’accrétion. Un trou noir en rotation aplatit sous forme de disque toute masse gazeuse ou solide qui a eu le malheur de trop s’en rapprocher. Il avalera cette matière un peu à la fois, faisant grossir sa masse et la surface de la sphère noire inconsistante l’entourant.

Vous vous dites peut-être que c’est une analyse digne du Corbot. En précisant certains faits, je semble vouloir dégonfler à tout prix l’importance du succès. Non, je le ramène simplement là où il doit se situer dans l’échelle des événements marquants. Ce cliché ne méritait pas les éloges dithyrambiques du genre: «Il y a eu un monde avant cette image et il y en a un autre après».

Holà! Wo les moteurs! Calmez-leur le pompon à cette équipe ou à la meute de journalistes en quête de la primeur du siècle. Le seul véritable grand succès de l’EHT est d’avoir réalisé un interféromètre des dimensions de notre planète possédant la résolution et la sensibilité nécessaires pour débusquer cet objet céleste. Elle n’a pas inventé l’interférométrie non plus, elle a simplement amélioré ses capacités par des techniques innovantes. C’est d’abord et avant tout un succès purement technique, pas scientifique. Je ne lui enlève aucune valeur, mais je refuse qu’elle s’arroge ou qu’on lui attribue la paternité de la première preuve de l’existence d’un trou noir, vraie image, mais fausse preuve de surcroit.

Bon, ça vous explique peut-être pourquoi j’ai tant attendu avant de vous faire part de mon opinion. J’ignorais, évidemment, comment les journalistes traiteraient le sujet, même si je m’en doutais un peu. J’ai lu et entendu beaucoup de bons articles et reportages. J’ai également été témoin de bien des stupidités. Faut croire qu’elles viennent comme les chaussures, toujours en paires, les uns sans les autres.

Je croyais que l’équipe dévoilerait tout d’abord une image de Sgr A*, le trou noir formant le cœur de notre propre galaxie, beaucoup plus petit que celui de M 87, mais autrement plus près de nous. Cela viendra probablement bientôt. L’image qu’elle a préféré montrer s’avérait probablement plus nette que celle de Sgr A* et pour une première, l’équipe a choisi la plus impressionnante des deux.

L’EHT continue ses travaux et espère encore augmenter la qualité de ses images. Le trop attendu télescope spatial James Webb viendra changer la donne lorsqu’il daignera enfin flotter dans l’espace bien loin de la Terre. La résolution de l’interféromètre s’améliorera d’un facteur aussi important que celui de l’EHT sur ses prédécesseurs. Et là, peut-être, commencerons-nous à réaliser de véritables percées scientifiques en ce qui concerne la frontière actuelle de nos connaissances sur la physique des trous noirs.

Le trou noir s’en vient !

Titre alarmiste, je sais. J’aurais dû titrer «L’image du trou noir s’en vient». Voilà à peine plus d’une semaine, j’écrivais un article dans lequel je cassais du sucre sur le dos de l’équipe de l’EHT pour avoir promis l’image réelle d’un trou noir en 2017, puis en 2018, et ensuite pour avoir gardé le silence depuis près de 9 mois.

Vous pourriez croire que mon article de la semaine passée était «arrangé avec le gars des vues» (expression chère à mon père lorsque la fin d’un film tombait un peu trop bien, afin que le bon gars puisse toujours gagner, sans égard à l’improbabilité des événements). Qui sait si mon article était véritablement dû à la chance pure, à une probabilité réaliste ou si j’ai profité d’informations non publiques?

event-horizon-telescope

Dans moins de deux jours, l’équipe de l’EHT a convié la presse internationale à une annonce exceptionnelle. Ça ne prend pas la tête à Papineau (expression québécoise consacrée) pour comprendre ce qu’ils veulent nous révéler. Ils vont nous montrer une image du trou noir qui se terre au cœur de notre Galaxie, le fameux Sgr A*. Tout le suspens ne se situe pas à ce niveau, mais ce à quoi l’image du trou noir ressemblera. Bien des gens ont misé sur le fait qu’on ne verra rien de semblable aux belles simulations numériques et je suis pas mal en accord avec ceux-ci.

Mon scepticisme ne se situe pas au niveau de l’existence du monstre galactique situé en plein cœur de la Voie lactée, je suis pas mal certain qu’il existe réellement. Je me questionne sur son apparence, sur ce que révèlera l’image prise de lui.

Supermassive black hole with torn-apart star (artist’s impress

Noir. Le trou noir sera noir, me direz-vous. Ce serait plutôt logique qu’un trou noir réputé pour ne rien recracher de ce qui a traversé son «horizon des événements», lumière incluse, paraisse noir. Et pourtant, un trou noir de cette masse, 4 millions de Soleils, qui bouffe des nappes de gaz ayant eu le malheur de s’aventurer trop près, risque de nous surprendre.

Tout d’abord, on en sait très peu sur sa vitesse de rotation. Comme tout ce qui se trouve dans l’Univers, ce trou noir tourne sur lui-même. Son environnement immédiat est affecté par cette vitesse de rotation et le résultat pourrait nous surprendre.8300758-3x2-700x467

Il faut savoir que cette image n’est pas un instantané, mais un montage très complexe de données diverses prises par tout un tas de télescopes différents, à de moments différents, à des longueurs d’ondes différentes, couplés en interféromètres simples ou multiples.

Ensuite, j’ai toujours douté de l’exactitude des représentations théoriques des effets relativistes. Quelque chose me dit que la vraie vie fera apparaitre une complexité bien plus grande et donc un trou noir bien moins évident à décortiquer et à analyser.

6848274_44f7c67a15bc4925d23231d69364fab11b3928b4_1000x625

Et enfin, même avec tout le respect qu’on doit à ce cher Einstein pour ses équations qui ont révélé la potentielle existence de ces monstres galactiques aux couleurs du Corbot, les trous noirs fricotent aussi bien du côté relativiste de la physique que du côté quantique et c’est là tout son intérêt. Cet objet unique en son genre réussit à exister en poussant les deux théories antagonistes dans leurs derniers retranchements.

Exprimé autrement, le trou noir établit un pont qui n’existe pas actuellement entre nos deux théories et seulement pour cette raison, l’image qu’on s’attend de lui ne peut pas parfaitement lui ressembler.

MIT-Blackhole-Jet_0

Dans moins de deux jours, on en saura un peu plus sur Sgr A*, mais il faut également s’attendre à ce que nous nous forgions tout un tas de nouvelles questions à son sujet. C’est ainsi que progresse la science, par théories et par preuves observationnelles, et on recommence sans jamais voir la fin.

Si l’équipe de l’EHT a réussi un petit miracle et qu’elle nous dévoile une image à la hauteur des attentes, on le saura assez rapidement. Si elle est seulement parvenue à obtenir un résultat duquel aucune conclusion ne peut être tirée et ainsi à renvoyer la balle vers une autre expérience encore plus ambitieuse, on le saura aussi.

Soyez toutefois certain que je ne manquerai pas l’occasion de commenter le contenu de cette conférence de presse dès que j’aurai le temps de l’analyser suffisamment pour écrire quelque chose de personnel et, espérons-le, intelligent, à son sujet.

Verra-t-on un trou noir… un jour ?

Les images dans cet article sont des vues d’artistes ou des images de synthèse

En 2018, j’ai écrit une série d’articles (1 ; 2 ; 3 ; 4) sur l’éventualité d’admirer pour la première fois l’image réelle d’un trou noir avant la fin de cette année-là. À l’évidence, ceux qui avaient pris ce pari, l’équipe de l’EHT (Event Horizon Telescope), ont péché par un trop grand optimisme.

WIRECENTER

Plus de trois mois après leur seconde échéance, aucune nouvelle n’a encore filtré sur leur site web, la dernière mise à jour remontant au 8 août 2018. En octobre 2018, la revue universetoday.com abordait ce sujet et rappelait à leurs lecteurs que rien n’avait été annoncé par l’équipe de l’EHT après l’échéance d’avril 2017.

Je ne veux pas discuter de leurs difficultés techniques, des temps réduits sur les télescopes et de tous les problèmes qu’ils ont dû affronter et qui continuent de jalonner leurs travaux pour composer cette fameuse image. Personne ne met en doute les immenses défis qu’a à relever l’équipe de l’EHT pour traiter les données accumulées en 2017.

giphy

Je veux juste parler de cette tendance de plus en plus répandue à vendre la peau de l’ours avant de l’avoir tué, à promettre sans sérieusement évaluer l’ampleur réelle du défi, à titiller l’intérêt des gens pour ensuite se rendre compte que ça ne pourra pas se faire dans les temps, à pérorer plutôt que penser.

Je ne suis pas contre l’enthousiasme, bien au contraire, mais je suis également très attaché au sérieux d’une démarche d’engagement. Promettre de réaliser quelque chose et s’en tenir ne semble plus représenter aucune importance, alors on promet sans compter puisque les conséquences de rater la cible semblent nulles.

bhlens_riazuelo_big

J’aurais pu choisir une autre victime que l’équipe de l’EHT, ce ne sont pas les exemples qui manquent. Je l’ai choisie parce que le sujet est éminemment important pour la cosmologie et sa théorie dominante, la relativité générale d’Einstein.

Euh, oui, bon! En cherchant bien, on peut trouver quelques sujets plus importants dans la vie, j’en conviens. Qu’importe, car tout ce qui a semblé trop éloigné du quotidien pour avoir la moindre importance dans nos vies a fini par l’envahir d’aplomb! Et la relativité générale n’y fait pas exception. Si vous l’ignoriez, à chaque utilisation d’une appli de positionnement par GPS, la relativité générale vient à la rescousse pour assurer la précision des calculs. Sans elle, les positions dériveraient de plusieurs mètres par jour.

lin_2048.png

Ce serait donc une erreur de penser que la cosmologie n’a d’intérêt que pour ceux qui l’étudient. La cosmologie est près de nous et même en nous. Le destin de l’Univers dépend de tout ce qu’il contient, nous y compris.

Les trous noirs pavent la voie vers une compréhension inédite de notre Monde, car ils relient la physique relativiste et la physique quantique. Ce sont des objets très simples et pourtant prodigieux.

Vide_nrj

Cette fameuse et toujours absente première image véritable du trou noir supermassif réfugié au cœur de notre Galaxie apporterait la preuve définitive que ce type d’aberration naturelle existe bel et bien, et pas seulement dans les livres de physique. En revanche, si l’image diffère de ce que nos simulations numériques nous montrent, nous pourrions mettre la main sur quelque chose d’extrêmement important, un indice d’une nouvelle physique.

Alors, de grâce, chère équipe de l’EHT, cesse de promettre la Lune ou le Trou noir et redouble plutôt d’ardeur au travail! Je déteste écrire des titres d’articles à la forme interrogative et ensuite devoir répondre «non». «Verra-t-on un trou noir en 2018?» C’était le titre de ma série d’articles concernant ton travail en cours… alors, cours!

Ceinture d’Orion

La constellation d’Orion forme un quadrangle bien connu des habitants de l’hémisphère nord. Elle est facilement repérable grâce à ses étoiles plus brillantes que la moyenne. Parmi celles-ci, Betelgeuse et Rigel se démarquent, la première pour être une digne représentante des supergéantes rouges en fin de vie et la seconde comme étant l’archétype de la supergéante bleue qui finira en supernova et fort probablement en trou noir. Dans l’Égypte ancienne, ce dessin d’étoiles représentait le dieu Osiris, la plus importante figure du panthéon égyptien.

osiris-prince-noir-688po

Cependant, je veux m’attarder aux trois étoiles centrales de ce polygone formant ce qu’on appelle la ceinture de ce chasseur céleste. Presque parfaitement alignées, ces trois supergéantes bleues se nomment Alnitak, Alnilam et Mintaka. Cet alignement n’est qu’illusion, car en regardant en trois dimensions, elles sont toutes situées dans des plans différents. Elles se situent donc à des distances différentes de nous.

Capture d’écran, le 2018-12-18 à 19.14.20.png

On associe souvent ces trois étoiles à des constructions mégalithiques formant au sol un une forme géométrique semblable. Les trois principales pyramides du plateau de Gizeh ainsi que celles de Teotihuacan semblent vouloir imiter ce quasi-alignement. Plusieurs se sont rués sans vergogne sur la hasardeuse hypothèse que cette fameuse ceinture serait le lieu d’origine des extraterrestres qui auraient participé à la construction de ces beautés de pierres. C’est peu probable, pour différentes raisons dont celle passablement importante que les étoiles les plus brillantes sont celles qui risquent le moins d’abriter la vie.

28641191

De fait, ce ne sont que de gros bébés joufflus de seulement quelques millions d’années d’existence issus d’une même pouponnière d’étoiles, la grande nébuleuse d’Orion. La vie intelligente et technologique ne peut pas se développer si rapidement. D’autre part, les cataclysmiques bouffées de particules éjectées de ces monstres stellaires tuent certainement toute vie qui pourrait se trouver dans un rayon passablement grand autour d’elles.

Capture-3-pyramides

Alnitak se trouve à 843 années-lumière de la Terre. Elle n’est pas constituée d’une seule, mais bien de trois étoiles, dont deux tournent rapidement l’une autour de l’autre. La plus brillante possède 33 fois la masse de notre Soleil et finira certainement en trou noir dans un avenir céleste pas si lointain.

Alnilam se situe loin derrière les deux autres, mais elle semble ne posséder aucun compagnon. En revanche, elle pourrait bien abriter un grand nombre de planètes et de lunes. Son imposante masse de 136 fois celle de notre Soleil chauffe toutefois les surfaces planétaires et lunaires à des températures infernales.

La troisième étoile de la ceinture, Mintaka, s’auréole de mystères. On pense qu’elle est constituée d’au moins quatre étoiles bleues ou supergéantes bleues dont la plus massive ferait 22,5 fois la masse du Soleil. Une cinquième étoile moins massive et moins chaude ferait partie de ce système.ufovni2012-sirius-orion

Sans pouvoir l’affirmer, il est très peu probable que la vie soit apparue et ait prospéré dans cette région précise du ciel. Attribuer les dispositions des pyramides à l’origine des extraterrestres qui seraient responsables de leur construction me semble une spéculation aux probabilités frôlant la nullité.

Oui, ces étoiles nous apparaissent exceptionnelles vu de la Terre, mais pour évoluer la vie n’en demande pas tant. Bien au contraire, elle préfère la quiétude, les étoiles beaucoup plus petites et relativement froides, les banlieues retirées, et surtout du temps, énormément de temps. Ces conditions particulières ne se retrouvent pas dans la ceinture d’Orion.

orion_map_z.jpg

En prenant pour acquis, ce qui est loin d’être prouvé, que les pyramides imitent le schéma des étoiles de la ceinture d’Orion, il faut chercher la raison véritable ailleurs que dans le lieu d’origine des extraterrestres bâtisseurs.

Que les anciens peuples aient simplement associé les étoiles de cette constellation à un de leurs dieux est, à mon avis, bien suffisant. Chez les Égyptiens, le culte d’Osiris est si ancien qu’il pourrait remonter à la première dynastie pharaonique. Qu’on ait voulu lui donner une des meilleures places dans le ciel me semble très logique sans devoir chercher d’autres raisons.

Que les grands bâtisseurs aient ensuite imité sur Terre la position des étoiles de cette constellation est de faire honneur à leur dieu le plus important. Toutes nos églises, cathédrales, oratoires, basiliques, etc. témoignent du même engouement religieux.

 

Vivons-nous dans un trou noir ?

Je mets tout de suite les points noirs sur les i. Le trou noir dans lequel nous vivrions ne serait rien de moins que notre Univers. J’aurais pu intituler mon article : « L’Univers est-il un trou noir ? » Ainsi, sortez immédiatement de votre esprit toutes les autres interprétations, autant celles de natures socio-économiques que salaces.

Ce qui amène les scientifiques, dont les cosmologistes, à s’interroger de la sorte, ce sont certains rapprochements possibles entre les deux. Je ne reviendrai pas sur l’ensemble des concepts théoriques des trous noirs, seulement sur celui qui concerne une vision « extérieure » qui est sa capacité de retenir infiniment ce qui se rapproche en deçà d’un certain rayon de son centre.

Donc, si notre Univers, là où nous vivons, correspondait à l’intérieur d’un trou noir, nous ne pourrions jamais en sortir. Ce concept de l’emprisonnement absolu est déjà considéré comme étant une particularité de notre Univers, sinon ce ne serait pas un Univers. Voilà le premier point commun visiblement attesté, même s’il n’est que supposition.

Partant de là, il est possible de déterminer si notre Univers est un véritable trou noir en mesurant ses dimensions et sa densité moyenne. Plus les dimensions d’un trou noir croissent, plus sa densité diminue. Il est donc possible de corréler les deux. Et si ce que nous savons sur les dimensions et la densité de notre Univers est juste, il est donc possible de confirmer ou d’infirmer le principe d’un Univers trou noir.

Densité moyenne de l’Univers

Avec une densité moyenne établie par observation à 5 atomes d’hydrogène par mètre cube, la matière dans l’Univers est passablement ténue. Ce chiffre fait fi de tous les autres atomes considérés comme marginaux, y compris l’hélium même s’il contribue à environ 10 % des atomes de l’Univers.

Dimensions de l’Univers

Le problème survient surtout lorsqu’on veut connaitre les dimensions de notre Univers. Il n’y a aucun moyen de vraiment les connaitre.

Expansion de l’Univers

Puisque l’espace est en expansion depuis le Big Bang survenu il y a de cela 13,8 milliards d’années, ce n’est pas seulement la frange limite qui s’éloigne, c’est chaque atome d’espace qui laisse place à d’autres atomes d’espaces autour de lui, contribuant à faire gonfler l’espace global de manière ahurissante. Ainsi, l’expansion de l’espace engendre des effets rendant sa mesure impossible.

Vitesse de la lumière

Puisque la lumière prend un certain temps à voyager dans l’espace, il peut exister des endroits éloignés de l’espace dont la lumière ne pourra jamais nous atteindre puisque l’expansion de l’espace entre ces lieux et la Terre grandit trop vite pour laisser le temps à la lumière de parcourir le chemin supplémentaire. Ces portions de notre Univers nous resteront pour toujours inconnues.

Dimensions de l’Univers observable

À défaut de connaitre ce qui existe au-delà de ce que la vitesse de la lumière nous permet de distinguer, on est contraint de ne pouvoir mesurer que ce qui est observable. Certains cosmologistes estiment cette dimension à 93 milliards d’années-lumière de diamètre et ce ne serait que l’Univers observable depuis la Terre, pas l’Univers entier.

Univers infini

L’Univers pourrait être infini, cependant tous les infinis indisposent passablement une grande quantité de physiciens qui voient dans ce terme des relents culturels religieux inappropriés, ils préfèrent le croire fini, tout en avouant leur ignorance sur sa possible taille réelle.

Le problème du contenant

D’autre part, si on considère cette valeur comme si nous la mesurions à partir de l’extérieur de l’Univers, on considère alors que le contenu de l’Univers s’étend dans un plus grand contenant que lui-même. Il faudrait donc englober ce contenant supplémentaire dans la mesure des dimensions de tout l’Univers. Mais où cesse ce jeu des poupées russes ?

Le problème de l’observateur

En physique, un bon observateur doit rester indépendant de ce qu’il observe, sinon ses constatations deviennent contestables. En faisant partie de l’Univers que nous tentons de mesurer, le statut d’observateur fiable nous est interdit et ainsi nos conclusions resteront toujours douteuses.

Expansion égale accrétion

Un trou noir accroit ses dimensions seulement s’il est en train de bouffer de l’énergie sous n’importe quelle forme. Puisque notre Univers grandit, s’il est un trou noir, il serait en train d’avaler quelque chose venu se promener dans son entourage extérieur. Mais dans ce cas, nous devrions voir de la matière ou de l’énergie apparaitre quelque part dans l’Univers. Toutefois, étant donné que nous n’avons pas accès à voir tout l’Univers, il devient difficile de réfuter l’existence de cette activité. Tout ce qu’on peut dire, c’est qu’on n’a jamais rien vu de tel dans la portion de l’espace qui nous est visuellement accessible. L’astrophysicien Fred Hoyle, le père du terme « Big Bang », parlait de notre Univers en lui donnant la propriété de faire apparaitre subitement de la matière. Cette vision correspondrait à celle d’un Univers trou noir en train de bouffer des mondes externes. Malheureusement, cet aspect est contredit par la diminution de la température du fond cosmologique qui devrait augmenter avec la quantité de matière alors qu’elle est en diminution constante depuis le Big Bang.

Né d’un trou noir

Ne pas confondre un Univers étant un lui-même un trou noir et un Univers né d’un trou noir. Cette dernière hypothèse est souvent évoquée pour expliquer l’événement Big Bang. L’Univers serait une fontaine blanche, une éjection issue d’un trou noir. Le problème est que personne n’a réussi jusqu’à présent à m’expliquer comment un trou noir peut créer une fontaine blanche alors que rien ne peut lui échapper. Lui aurait-on inséré un bâton dans son trou noir et il aurait vomi ses tripes ? Dans ma tête, ceux qui ont inventé le concept de fontaine blanche effectuent une piètre tentative pour réhabiliter la nature définitive et irrécupérable d’un trou noir qui est de dévorer sans restituer… ou si peu lorsqu’il s’évapore en émettant quelques particules de-ci de-là, mais rien pour créer une fontaine de jouissance blanche pour physiciens en manque de libido d’idées.

Mon opinion

Je considère notre Univers en vase clos et à ce titre, il se comporte comme un trou noir en ne laissant rien échapper. Cependant, il devrait posséder d’autres caractéristiques communes avec ces monstres cosmiques qu’à mon avis, il ne partage pas. Ainsi, notre Univers ne serait pas un véritable trou noir au sens einsteinien du terme.

Penser l’Univers autrement — 2

Dans l’article précédent, j’entame une réflexion sur une vision radicalement nouvelle de l’Univers, soit un « Univers tramé informatif plurivalent (UTIP) ». Puisque cet article se veut la suite, je vous recommande la lecture du premier volet.

Démystification des bizarreries quantiques

Mon Univers informatif tramé et plurivalent expliquerait les sauts quantiques des électrons et leurs orbitales, la non-localité et tout un tas de concepts quantiques difficilement compréhensibles et acceptables dont ceux reliés à la mesure. L’expérience des fentes de Young n’aurait plus rien d’incompréhensible ou de mystérieux.

2Interferences_Tanamura

Décohérence quantique

Ce qu’on nomme la décohérence quantique n’est en fait que la matérialisation de l’information causée par un impact, une mesure, une commande spécifique ou un algorithme traitant un lot d’informations contenues dans plusieurs mailles et qui considère qu’une particule ou un groupe de particules prendra forme à cet endroit de l’espace-temps.

quantumcomputingsakkmesterke

Intrication quantique

Ce phénomène si combattu par Einstein, mais maintes fois prouvé, connait avec ma théorie une fin heureuse pour ce cher homme, ou à tout le moins une explication qu’il aurait pu accepter.

big_artfichier_793419_7691440_201804304014163.png

Lors de l’émission de deux photons intriqués, on sait qu’on émet de l’information et non pas les photons eux-mêmes. Cette information se transporte à travers la trame à vitesse causale c (vitesse de la lumière). Lorsqu’il y a détection d’une caractéristique comme le spin d’un des deux photons, l’information sur le spin du deuxième photon intriqué est déjà rendue là où on va le matérialiser. L’intrication quantique ne viole donc aucunement la loi de la causalité.

Augmentation de la masse avec l’augmentation de la vitesse

Ce phénomène relativiste imaginé et calculé par Einstein se comprend assez bien avec l’Univers UTIP. On remarque dans notre monde que la masse d’une particule augmente avec sa vitesse jusqu’à valoir l’infini ∞ si on la pousse à atteindre la vitesse limite de causalité c.

emc

Or ce comportement s’explique en considérant qu’une information requerra un nombre plus important de mailles pour être transmise plus rapidement afin de ne pas saturer la capacité des mailles d’espace-temps et ainsi de corrompre ou de perdre cette information. L’usage de plus de mailles par unité de temps équivaut exactement à une plus grande quantité d’information fixe, donc à une plus grande masse.

La gravitation

On peut même comprendre les effets cosmologiques comme la déformation graduelle de l’espace-temps lorsque la quantité de matière (d’informations) augmente. Si on considère que les mailles gardent toujours les mêmes dimensions, il faut donc accepter que ces déformations soient de l’espace-temps supplémentaire créé pour aider à supporter le poids grandissant des informations transportées sur la trame et non pas un étirement de ces mailles comme le montrent souvent les représentations de la gravitation de la relativité générale.

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

Si la masse n’est plus qu’une information inscrite dans des paquets qui se meuvent plus ou moins rapidement sur la trame et qu’elle crée sur son passage des mailles d’espace-temps supplémentaires, il faut donc accepter que la gravitation qu’exerce une masse sur une autre représente simplement la propension de l’information à trouver le maximum de mailles d’espace-temps d’informations et à s’en rapprocher afin d’en utiliser une certaine quantité à son propre profit.

Une masse importante crée une grande quantité de mailles d’espace-temps vierges d’informations qui deviennent disponibles pour cette même masse d’information, mais également pour tout paquet d’information passant à proximité. Cela exerce sur ce paquet un attrait à se rapprocher de ces mailles supplémentaires, car chaque paquet d’information est conçu de telle façon à rechercher le chemin le plus susceptible de le transporter efficacement, donc à trouver le chemin où existent le plus de mailles.

Les trous noirs

Les trous noirs correspondent simplement à des endroits où le nombre de mailles à créer dépasse la capacité de la trame d’espace-temps. L’information transportée est alors piégée au sein d’une certaine quantité de mailles qui perdent leur capacité de générer des particules à cause de leur impossibilité de résoudre les équations à partir d’informations incomplètes au sein de chacune des mailles.

o-WORMHOLE-facebook

Un trou noir, c’est un disque dur d’ordinateur au catalogue corrompu à cause d’une quantité trop grande d’informations. Les infos inscrites dans ces mailles sont irrémédiablement piégées.

L’expansion de l’Univers

On peut expliquer l’expansion de l’Univers par son besoin de transporter de plus en plus d’informations. Ce gonflement ne se produit pas sur les rebords de l’Univers, mais partout dans l’espace, créant des mailles supplémentaires capables de relayer toujours plus d’informations.

838_000_11h35e

Cette création se produit à partir de ce qu’on nomme aujourd’hui l’énergie sombre ou noire, une énergie potentielle capable de générer des mailles d’espace-temps à un rythme défini par la quantité d’information à transmettre afin d’éviter la saturation des mailles, le piégeage des infos et ainsi la production de trous noirs intempestifs.

Conclusion

Voilà en résumé comment un monde basé sur un transport d’informations sur des particules plutôt que sur le transport des particules elles-mêmes permettrait de comprendre et de lier la physique quantique et la physique cosmologique en une seule vision cohérente de notre Univers.

hqdefault

Il reste tellement à écrire sur ce type d’Univers et de choses à expliquer, mais je suis sincèrement convaincu que cette vision permet de réconcilier une fois pour toutes les deux pans apparemment incompatibles de notre physique moderne.

Je poursuivrai mes réflexions sur mon «Univers tramé informatif plurivalent» (UTIP) dans d’autres articles qui seront répartis parmi beaucoup d’autres sujets de préoccupations. Restez à l’affût en vous abonnant.

La gravitation

J’aimerais vous partager un peu de mon enghousisame pour la gravitation, car ce phénomène, cette force, cet effet, ce sujet d’étude est plus que fascinant.

socrate-gorgias

En Grèce antique, elle n’était pas universelle puisque les observations montraient que la fumée montait. Ainsi, tout ne tombait pas sur Terre. Ils voyaient également que la Lune ne tombait pas. Les objets possédaient donc un lieu naturel auquel ils se raccrochaient, soit la Terre, soit le ciel.

nyf30hn5iXlt45k6fhP-o

Par la suite, Galilée montre que la chute des corps est universelle et pourtant l’expérience avec des corps légers et lourds ne pouvait pas le démontrer à cause de la résistance de l’air plus perturbante pour les objets très légers. Dans le vide, tous les corps tombent effectivement de façon identique, mais pas sur Terre. Et pourtant, il ose le prétendre grâce à des exercices de pensée, mais certainement pas grâce à une expérience qui aurait prouvé qu’une plume tombe à la même vitesse qu’une pierre ! Sa démonstration à la tour de Pise est du folklore.

Newton fait faire un bond de géant à la gravitation avec sa loi montrant que c’est une force qu’exercent les objets massifs entre eux. Il en déduit une formule montrant que cette force est proportionnelle à la multiplication des masses et diminue en fonction du carré de la distance séparant les deux objets.

be105d73-c473-4250-8569-9b49213418ad

Mais le plus impressionnant est qu’il établit un parallèle entre la chute des corps sur Terre et les orbites célestes en affirmant que la Lune tombe bien sur la Terre, mais sa rotation autour de notre planète fait qu’elle ne cesse de nous rater. Il découvre l’existence d’une constante gravitationnelle (G) identique pour tous les corps s’attirant dans l’Univers. La force gravitationnelle s’exerce sans aucune limite de distance et elle est instantanée. Il sait que cette force dépend des masses des objets, mais il ignore ce qui fait que la masse attire la masse.

Einstein saute ensuite sur l’occasion de déclasser la théorie de Newton en sachant que la force gravitationnelle ne peut pas s’exercer instantanément puisque rien ne peut dépasser la vitesse limite correspondant à la vitesse de la lumière dans le vide. Il a compris que la théorie de Newton n’est qu’une approximation d’une théorie plus générale. Il cesse de voir la gravitation comme une force. Il établit une équivalence entre la masse inertielle et la masse pesante. Il considère que la masse déforme l’espace-temps et c’est cette déformation d’autant plus importante que la masse est grande et dense qui fait courber les trajectoires des objets, leur imposant de tourner le long d’une courbe elliptique pour les planètes gravitant autour des étoiles et des lunes autour de leurs planètes.

albert-einstein-9285408-1-402

La théorie du grand homme parvient même à prévoir que le temps est modifié par le champ de gravité. Aujourd’hui, il suffit de surélever une horloge atomique de 20 cm pour commencer à apercevoir un décalage entre celle-ci et une autre restée bien en place. Il reste cependant encore une grande inconnue dans cette théorie, pourquoi la masse plie-t-elle l’espace ? Et si la gravitation n’est pas une force, comment la masse parvient-elle à déformer l’espace autour d’elle sinon en lui appliquant une force qui l’étire ?

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

Mais le plus gros problème avec la théorie de la gravitation d’Einstein qu’on appelle la relativité générale se situe dans les extrêmes. Elle prédit correctement la formation des trous noirs, mais elle établit une densité centrale valant l’infini, ce qui cesse d’être de la physique. Même chose pour le Big Bang, la relativité générale considère qu’au temps zéro, l’Univers était infiniment dense, infiniment chaud et infiniment petit. Une théorie qui prédit des infinis n’est plus une théorie et là encore, on peut considérer qu’il existe une meilleure théorie que la relativité générale.

agujero_negro 3

Afin de se dépêtrer de ces dérangeants infinis, les physiciens inventent d’autres théories dont l’une semble prometteuse, la gravitation quantique à boucles. Cette théorie cesse de voir l’espace-temps comme étant continu, il devient discret, comme des atomes tous identiques d’espace-temps. On obtient alors des aires et des volumes minimaux et discrets, une sorte de maillage tridimensionnel où tous les petits volumes incompressibles sont reliés entre eux par un réseau de spins. Le plus grand spécialiste de cette théorie est l’Italien Carlo Rovelli. L’Américain Lee Smolin de l’Institut Perimeter au Canada a également apporté une importante contribution. Plus récemment on entend beaucoup parler du Français Aurélien Barrau, une étoile montante de cette théorie et un excellent vulgarisateur. Je le félicite également pour ses sorties remarquées en faveur de l’environnement.

Mais la gravitation n’a pas terminé de nous surprendre et de nous étonner. Récemment, la mise en lumière du boson de Higgs et du champ de Higgs nous éclaire un peu plus sur le mécanisme engendrant la masse. Cependant, des questions fondamentales demeurent, dont à savoir pourquoi les particules ont toutes des masses différentes et pourquoi elles ont les masses qu’on leur connait ?

Mais il y a pire. On ignore si la gravitation existe aux petites échelles. Et quand je parle des petites échelles, je ne fais pas seulement allusion au niveau des particules élémentaires, mais à tout ce qui se situe en deçà du dixième de millimètre à cause d’autres forces s’exerçant à ces échelles et qui masquent très efficacement les éventuels effets de la gravitation. Pour savoir si deux protons s’attirent par la force gravitationnelle, il faudrait pouvoir la discerner à travers la force électromagnétique qui les repousse avec un facteur 1030 fois plus important.

En résumé, on sait calculer plein de choses en rapport avec la gravitation, mais on ignore encore totalement ce qui la constitue et même si elle existe réellement. Si la gravitation reste l’effet le plus évident à l’échelle humaine, elle demeure la plus mystérieuse de toutes les interactions.

E pour excellence

EDans ma série d’articles consacrés à un nom commençant par une lettre précisée, voici venu le tour de la lettre E et d’un mot qui ne rate jamais de me faire grincer des dents, le terme «excellence».

Ce mot fourre-tout sert d’outil d’évaluation, mais surtout d’outil de dénigrement démagogique, car l’excellence n’est jamais définie avec précision. Pour bien évaluer les caractéristiques de quelque chose, on utilise plutôt le mot «qualité» qui possède ses règles propres, ses systèmes, ses standards, ses cadres de références, ses méthodes et ses outils. Mais pour l’excellence, les choses se compliquent, car le terme cultive les flous.

operational-excellence.jpg

Tout d’abord, l’excellence suppose un classement sous-jacent et celui-ci exige donc une évaluation préalable. Toute bonne évaluation repose sur des principes précis. Savoir ce qu’on veut exactement évaluer est la première question à se poser. Ensuite viennent les éléments mesurables susceptibles d’apporter une partie de la réponse. Ces mesurables doivent être pondérés pour former un ensemble de critères aux poids relatifs. Une série de questions sera élaborée afin de constituer les sondes qui mesureront ces critères. Enfin, l’analyse des résultats permettra de tirer des conclusions.

Cependant, tous ceux qui parlent d’excellence se moquent des évaluations faites dans les règles de l’art puisque leur but se situe ailleurs, à la frontière d’un discours manipulateur. Ou plutôt, ils prononcent des discours servant à manipuler qu’ils déguisent en discours rationnels, puisque le mot excellence est un vide qui absorbe tout, mais qui ne restitue rien.

slider1

Pourquoi? Parce que personne n’est excellent. Pourquoi personne n’est excellent? Parce que l’excellence n’existe pas. Pourquoi l’excellence n’existe-t-elle pas? Parce que personne ne peut la définir suffisamment précisément selon les contextes pour qu’elle serve d’outil de mesure. Et pourtant elle est utilisée pour mesurer. Mais mesurer quoi?

La seule chose que le mot excellence mesure c’est la capacité à se culpabiliser. Plus on se sentira coupable du travail accompli, plus on tendra à croire qu’on peut offrir de l’excellence.

Ce mot sert uniquement aux dirigeants démagogues à exiger plus en ne donnant rien, à rendre les gens honteux et coupables des problèmes engendrés au sommet de la pyramide, à persécuter moralement des innocents en camouflant les vraies causes et les vrais responsables des échecs ou des piètres performances.

Comprenez le mot «excellence» comme une tentative de manipulation infondée, injustifiée et fort probablement injustifiable. Ne vous laissez pas emberlificoter par un discours mettant en valeur ce terme qui s’apparente grandement à un trou noir.

38577_vignette_p1000203

J’entends souvent les gens utiliser le mot «excellent» lors d’échanges verbaux et la télévision est particulièrement riche en la matière lors d’entrevues ou durant les bulletins de nouvelles. Voici un exemple.

«La catastrophe a fait plus de cent morts et au moins le double de blessés.» Et le lecteur de nouvelles de répondre au reporter pour clore l’entretien: «Excellent.»

Qu’est-ce qui est si excellent? La catastrophe? Le nombre de victimes? Les images d’horreur? La cravate du reporter? Ah! Peut-être le reportage en lui-même, mais sur quels critères est-il qualifié d’excellent?

Pour les raisons préalablement décrites, rien ne peut être qualifié d’excellent sans évaluation précise et précisée, mais cet exemple démontre la nullité du terme, tout comme la stupidité de son utilisation et sa banalisation, mais ça fait chic en donnant l’impression d’une appréciation rationnelle et juste, alors qu’il n’en est absolument rien.

Alors, comment avez-vous trouvé mon article d’aujourd’hui? Excellent, peut-être? Puisque je vise toujours l’excellence…

Pont Einstein-Rosen

Chose promise, chose due. Voici la suite de l’article traitant d’intrication quantique.

Ne cherchez pas le pont Einstein-Rosen sur Google Maps, il ne traverse aucune rivière. Cependant, il traverse bien un espace entre deux lieux. Et quel espace!

Ces deux physiciens ont signé un article en 1935 alors que faisait toujours rage la polémique autour de la réalité de la physique quantique. À partir des équations de la relativité générale, ils montrèrent que certaines solutions créeraient un déchirement de l’espace-temps et une connexion possible entre deux feuillets distincts de l’espace-temps.

image-3

Le concept du trou de ver était né, un lien sous-jacent à travers deux points éloignés qui, si nous étions en mesure de l’emprunter, permettrait de court-circuiter le chemin normal. Ce raccourci spatio-temporel donnerait l’impression d’avoir franchi une grande distance en violant le sacro-saint principe de la vitesse limite dans le vide, mais il n’en est rien. Venant d’Einstein, rien de surprenant qu’il respecte son propre postulat.

Mais en quoi la physique quantique joue-t-elle maintenant dans ce principe astrophysique régi par la relativité générale? La physique de l’immensément petit a donné une façon de créer ce trou de ver entre deux endroits précis de l’espace et c’est grâce à l’intrication quantique.

1477053338

Intriquez une grande quantité de matière. Séparez ces particules en les plaçant à deux lieux de votre choix. On sait que l’intrication garde un lien fort entre ces éléments, peu importe la distance. Engendrez ensuite deux trous noirs en condensant la matière aux deux endroits. Voilà, un trou de ver est né, exactement là où vous le désiriez.

Si ce concept résout le problème de la création d’un trou de ver entre deux lieux distincts et prédéterminés, il reste cependant totalement infranchissable d’un côté vers l’autre puisque si on peut entrer dans un trou noir, on ne peut jamais en ressortir, soit en faisant demi-tour, soit en tentent d’emprunter celui situé droit devant.

maxresdefault-3

D’après le physicien théorique Leonard Susskind, professeur à l’université Stanford en Californie, il faut trouver quelque chose de plus élaboré, mais le principe de l’intrication quantique restera probablement une partie essentielle du processus qui permettra un jour d’engendrer un véritable pont Einstein-Rosen réellement franchissable.

7790673342_thor-et-brunce-banner-dans-thor-ragnarok

Dans le film Thor: Ragnarok, nos héros Thor et Hulk sont coincés à l’autre bout de l’Univers et doivent se rendre sans délai à Asgard. Bruce Banner reconnait un «pont Einstein-Rosen» et la bande de gros bras l’emprunte afin de traverser l’espace en un temps record. Les scripteurs ont eu l’intelligence de ne pas choisir deux trous noirs comme origines et débouchés de ce pont, desquels on ne peut échapper. Ils parlent plutôt d’un pont entre deux étoiles à neutrons.

agujero_negro 3.jpg

Je considère la construction de vrai pont Einstein-Rosen que nous pourrions un jour utiliser comme représentant l’ultime défi technologique de l’humain. Je crois sincèrement que si nous parvenons à continuer d’exister sans nous détruire, nous y arriverons et nous pourrons alors visiter une grande partie de notre Galaxie.

02899110b33a0040a7c5524d265e2c9b8fd7fa18_00.gif

Pour visiter le reste de notre Univers, les autres galaxies, on aura besoin d’un autre saut technologique, mais commençons par régler le cas du voyage intergalactique. Notre terrain de jeu viendra de s’agrandir bien suffisamment pour nous occuper pendant un bon milliard d’années.

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Verra-t-on un trou noir en 2018 ? (3)

J’ai entendu votre question et je vous réponds d’entrée de jeu, la réponse est non! Il n’existe aucune photo de l’horizon d’un trou noir nulle part sur Terre. Toutes sont des illustrations d’artiste ou des dessins créés par ordinateur à partir des formules mathématiques tirées de la théorie de la relativité générale d’Einstein. Par contre, ça pourrait changer dès cette année.

black-hole

Poursuivons maintenant notre aventure entreprise avant-hier et hier en présentant quelques concepts astronomiques. Si on veut obtenir une photo d’un horizon d’un trou noir, il faut quand même comprendre comment on pourrait y arriver. Vous verrez qu’il ne suffit pas de relier un iPhone à un télescope.

Tout d’abord, différencions deux concepts des instruments d’optique, leur sensibilité et leur résolution.

La sensibilité dépend dans un premier temps de la qualité du détecteur à transformer les photons en signal électrique. Attachez une patate à un télescope, vous n’obtiendrez pas la photo d’un champ de patate. Ensuite, il y a le nombre de photons qui seront amenés au détecteur. Cette quantité dépend de la taille du télescope, ce qu’on appelle la surface collectrice du miroir principal. Enfin, pour augmenter le nombre de photons, le télescope visera le même point du ciel le plus longtemps possible.

Disque_d'Airy_03

La résolution définit la capacité de l’instrument à différencier deux éléments l’un de l’autre. Elle dépend du nombre de pixels du détecteur, de la fréquence à détecter et aussi de la parallaxe.

La parallaxe est l’angle maximal formé par deux points de la surface collectrice. Plus le diamètre du télescope est grand, plus l’angle sera important et plus son pouvoir de résolution sera important. Un grand miroir aura donc deux avantages. Il collectera plus de photons et il aura un pouvoir de résolution plus important.

Toutefois, aucun télescope terrestre ou spatial n’a la résolution nécessaire pour voir les détails des effets optiques occasionnés par les trous noirs connus, même ceux du petit monstre supermassif caché au centre de notre Galaxie. Peut-on attendre la mise en service en 2025 du télescope E-ELT de 39 mètres de diamètre, mais là encore, sa résolution serait beaucoup trop faible.

Artist’s impression of the European Extremely Large Telescope

Qu’à cela ne tienne! Les astronomes sont des petits futés et ils ont pris la définition de la résolution d’un instrument optique au pied de la lettre. S’il faut augmenter la parallaxe pour améliorer le pouvoir de résolution, il suffit de prendre deux télescopes au lieu d’un seul et de leur faire regarder le même objet en même temps afin de créer un télescope virtuel de meilleure résolution.

Différentes solutions ont été mises de l’avant, dont certaines plus simples, d’autres plus complexes. La plus simple est le concept des jumelles, c’est le cas du BLT (Binary Large Telescope).   

1200px-LargeBinoTelescope_NASA

Pour des télescopes indépendants, il faut trouver le moyen de traiter les signaux reçus par les deux engins pour les faire correspondre exactement dans le temps. On parle alors d’interférométrie. Une fois encore, deux solutions existent. Les interféromètres couplés localement, comme le VLT. Possédant 4 gros et 4 petits télescopes, il est possible de simuler un télescope de 200 mètres de diamètre.

eso0111f

Mais encore là, c’est beaucoup trop peu pour espérer voir l’horizon d’un trou noir. Ça prendrait un télescope au moins des dimensions… de… de… la Terre. Et c’est là qu’ils ont créé le EHT (Event Horizon Telescope). Ce n’est pas un nouveau télescope, mais un protocole d’utilisation d’un réseau de neuf télescopes existants répartis un peu partout sur la planète, y compris au Groenland et en Antarctique. Son diamètre virtuel définissant sa capacité de résolution est de près de 15000 km.

w453-81281-ehtimagehighres

Une première session photo s’est déroulée en avril 2017 et les résultats sont à l’étape du traitement qui pourrait se terminer d’ici la fin de l’année 2018. Ce sont des pétaoctets de données à traiter avec des difficultés énormes, d’où le délai entre la prise photo et le résultat final.

Demain, quelques questions – réponses sur le sujet.