La surprise des galaxies primordiales

Je fus parmi ceux qui corrigeaient la date de mise en orbite du fameux télescope James Webb dans l’article principal sur Wikipédia. J’ai par la suite abandonné cette lassante activité, car je n’en voyais pas le bout. Avec environ 340 points critiques comparativement à une cinquantaine pour d’autres télescopes spatiaux, chaque point critique étant un élément d’échec complet de la mission advenant un malfonctionnement partiel ou complet, on comprend (un peu mieux) la décennie de retard et le budget de vingt fois supérieur à celui prévu initialement. Heureusement, l’attente en valait la peine et plus personne ne chipote sur les coûts « astronomiques » après avoir constaté ses premières images et résultats tout bonnement époustouflants.

Je dois signaler le magnifique travail de la fusée Ariane 5 qui a doublé l’espérance de vie du télescope spatial grâce à la précision de son tir. Ainsi, il pourra nous abreuver plus longtemps d’images à couper le souffle lorsqu’on les compare avec celles des autres télescopes. J’insiste également sur le fait que le James Webb ne succède pas au célèbre Hubble puisque le premier observe dans les longueurs d’onde infrarouges contrairement au second qui voit principalement dans la portion visible du spectre électromagnétique.

Et justement, grâce à cette différence fondamentale, James Webb peut voir tout un tas de trucs laissés dans le noir jusqu’à présent, car l’expansion de l’univers décale la lumière émise par les objets célestes vers des longueurs d’onde plus longues. Donc, ce qui se trouvait autrefois dans le spectre visible peut maintenant être observé uniquement en infrarouge. Et plus on remonte loin dans le passé, donc au plus près du Big Bang, plus les objets s’observent, non plus en rayons visibles, mais en infrarouge éloigné.

Et du coup, à des distances immensément éloignées, une surprise de taille nous attendait. Alors qu’Hubble nous montrait au mieux de ses capacités des galaxies ayant un degré de mochitude élevé (j’ai emprunté ce terme à David Elbaz), James Webb nous fait voir des galaxies bien plus immenses que prévu et apparemment mieux formées.

Les astrophysiciens n’y comprennent plus rien. Leurs modèles de formation des galaxies viennent de voler en éclats, car selon ceux-ci, les plus vieilles d’entre elles devraient plus ressembler à celles présentées par Hubble qu’à celles observées par James Webb.

J’ai lu quelque part que ces résultats remettaient même en cause la théorie du Big Bang alors que rien n’est plus faux. Une multitude d’autres évidences n’ayant rien à voir avec les galaxies primordiales ne sont aucunement réfutées ni même ébranlées par ces nouvelles images. Oui, les astrophysiciens doivent absolument refaire leurs modèles de formation des galaxies. Ils devront peut-être même revoir l’âge de l’Univers actuellement estimé à 13,8 Ga, mais en aucun cas le télescope James Webb n’a pris en défaut le principe du Big Bang.

L’étendue et la qualité de nos connaissances dépendent de la fabrication de nouveaux instruments complémentaires et de plus en plus performants. Puisque le vénérable Hubble vit actuellement sa dernière phase active, on devra bientôt lui fournir un véritable successeur. Pour ce faire, la NASA planche actuellement sur le télescope spatial Nancy-Grace-Roman dont sa mise en orbite initialement prévue pour 2025 est maintenant planifiée en 2027. Tous espèrent que l’expérience acquise avec le Webb permettra d’éviter dix années de retard. Deux suffiront amplement à éprouver notre patience.

Temps tridimensionnel

Le temps, apparemment si simple à comprendre, est bien plus complexe qu’il n’y parait. Einstein a formalisé l’aspect bidimensionnel du temps avec sa théorie de la relativité restreinte. Le temps est relatif aux voyageurs les uns par rapport aux autres. Si les horloges battent la mesure régulièrement sans faillir, elles ne s’entendent pas sur un temps commun dès qu’il existe des différences de vitesses ou de champ gravitationnel entre elles.

Ce que nous appelons le temps, celui qu’on ressent, n’est qu’une composante du « Temps » einsteinien. Une fois de plus, il faut se rabattre sur le théorème de Pythagore pour comprendre le temps selon Einstein.

TaTrTi

Dans la figure précédente, la ligne horizontale tr représente le temps relatif entre 2 objets. La ligne verticale ti représente le temps imaginaire, la composante du temps perdu dans la différence de temps entre 2 objets qui ne se déplacent pas à la même vitesse ou qui ne partagent pas le même champ gravitationnel.

TaTrTi2

Les différentes sommes vectorielles des 2 temps tr et ti, les lignes diagonales grises ta pour le temps absolu, restent invariables en longueur, car si tr augmente, ti diminue et vice versa. C’est ce qu’on appelle l’invariance de Lorenz. Le temps (absolu) ne varie jamais en longueur, seulement en direction.

Mais si nous poussons ce concept du temps juste un peu plus loin, plutôt que de nous restreindre à voir le temps en 2 dimensions, que se passerait-il si, dans les faits, le temps était tridimensionnel? L’invariance de Lorenz, ou si vous préférez, la somme vectorielle des 3 composantes doit cependant encore rester constante, donc d’une longueur identique, peu importe sa direction spatiale. Ce principe fait en sorte que la vitesse de la lumière c reste invariable, peu importe le référentiel.

TaTrTiTj

Lorsque tj, la troisième composante de ce Temps, vaut zéro, on retrouve la loi de la relativité restreinte. Lorsque cette composante tj n’est pas nulle, tr et ti raccourcissent pour conserver la longueur invariable du temps absolu. Une horloge ne ressent pas l’effet de cette troisième dimension temporelle, tout comme elle ne ressent pas la deuxième dimension, elle continue de battre la mesure au même rythme. Toutefois, ce nouveau vecteur temporel pourrait expliquer un phénomène astrophysique appelé le « décalage vers le rouge » de galaxies.

Puisque la vitesse de la lumière reste invariable dans tous les référentiels, si la troisième composante du temps tj a une certaine longueur, quelque chose doit avoir varié et c’est la fréquence de la lumière, autrement dit, sa couleur.

Le décalage vers le rouge observé chez les galaxies distantes, d’autant plus grand que les distances entre elles et nous sont importantes, pourrait donc dépendre de deux facteurs et non pas d’un seul. Le premier facteur est celui que nous connaissons déjà, le changement de fréquence proportionnel à la vitesse d’éloignement de ces galaxies, l’effet Doppler. Cependant une partie importante des décalages observés pourrait dépendre du troisième facteur temporel.

https---blogs-images.forbes.com-startswithabang-files-2016-03-1-JTMUwFeDxeDp-yi2lqxLLw-1200x820

Si tel était le cas, nous pourrions reléguer aux oubliettes, ou à tout le moins minimiser l’effet de la constante cosmologique, autrement dit la fameuse « énergie noire » de laquelle on ne connait rien. La nouvelle interprétation de nos observations actuelles serait que l’Univers ne serait pas en expansion aussi rapide que cela peut nous paraitre, voire à la limite sans expansion du tout.

image-3

S’il n’était pas décédé, Fred Hoyle jubilerait. C’est celui qui, sous le coup de la dérision, a inventé le terme Big Bang pour se moquer de cette théorie qui fait aujourd’hui la quasi-unanimité chez les physiciens. Lui défendait sa propre théorie, celle de l’Univers quasi stationnaire et la troisième dimension temporelle pourrait bien lui donner raison.

bigbang

Il reste une question à laquelle il faut répondre. La longueur de cette fameuse troisième composante du temps serait due à quoi? Qu’est-ce qui la fait varier et qui influencerait la fréquence de la lumière?

Et si le temps lui-même créait la longueur de ce vecteur? On l’appellerait le « vecteur du temps qui passe ». Imaginons que plus le temps passe, plus ce troisième vecteur de temps s’allonge. Il serait en quelque sorte la mesure de l’âge de l’Univers.

En se débarrassant de cette douloureuse épine qu’est l’énigmatique, l’hypothétique, la dérangeante énergie noire en lui substituant le principe d’un temps tridimensionnel, nous attaquons la cosmologie sur de toutes nouvelles bases, car tout change, l’âge de l’Univers, ses dimensions et surtout son passé, son présent et son avenir.

univers-ro

J’y reviendrai, car je sens sur vous l’effet du temps, celui que vous venez de prendre pour lire et tenter de comprendre cet article. Comme toujours, ne soyez pas timorés de commenter ou de poser des questions.