L’image du trou noir

Ça y est, l’équipe de l’EHT y est enfin parvenue. Une image réelle d’un trou noir supermassif a été rendue publique après d’importants délais sur l’échéancier initial. Vous l’avez probablement vue, elle orne également le sommet de cet article. Elle s’est répandue comme une trainée de poudre pour rapidement faire le tour de la planète. Je suspecte seulement la tribu amazonienne de la vallée de la rivière Javary ou celle de l’ile North Sentinel en mer d’Andaman de l’avoir ratée. À part ça, tout le monde en a entendu parler.

Des exploits technologiques multiples et sensationnels ont permis ce tour de force pourtant assez prévisible, car malgré le succès de la mission, malgré l’exotisme de cette image, l’équipe n’a finalement que très peu prouvé de choses qu’on ne savait déjà.

En fait, cette image ne prouve rien de nouveau ou de différent, pas même l’existence des trous noirs. Nous sommes si conditionnés à croire aux seules preuves visuelles qu’on ignore que les vraies preuves de l’existence de ces monstres stellaires ont été récoltées depuis un certain temps sous d’autres formes. Mais voir, c’est croire et l’équipe de l’EHT a profité de notre façon primitive d’aborder la vérité pour réaliser un événement médiatique planétaire.

Les gens formant cette équipe savaient exactement là où pointer leurs instruments afin de réaliser cette image. Ils connaissaient déjà avec certitude l’existence de ce monstre supermassif au centre de la galaxie M87. Et non seulement ils connaissaient son existence, ils connaissaient également sa position exacte, sa masse (6,5 milliards de fois la masse de notre Soleil) et ses dimensions précises. Donc, du point de vue strictement scientifique, ils n’ont absolument rien découvert.

Nous connaissons cet étrange phénomène cosmique qu’est le trou noir depuis plus d’un siècle. C’est bien Albert Einstein qui, en élaborant sa formule de la relativité générale, a permis de comprendre comment les trous noirs pouvaient exister. Cependant, contrairement à bien des déclarations faites en ce sens, le grand homme ne les a jamais prédits. C’est un dénommé Karl Schwarzschild qui a résolu les équations pour une étoile et qui a découvert qu’en deçà d’un certain rayon, la gravitation génère un espace temps si courbe qu’il crée une singularité, un point de densité infinie dans un rayon nul. Einstein croyait en ses équations, mais pas aux trous noirs. D’après lui, la Nature possédait un mécanisme qui devait empêcher ces anomalies d’apparaitre. Il avait tort puisque les trous noirs existent bel et bien.

D’ailleurs, il faut savoir que cette image ne montre pas du tout un trou noir. Stricto sensu, un trou noir est un point infiniment petit et parfaitement noir de surcroit. Donc personne ne photographiera jamais un véritable trou noir. Mais alors, que montre cette foutue image si ce n’est pas un trou noir? Elle montre les effets causés par un point infiniment dense sur son environnement. Le trou noir est donc bien là, mais c’est un point plus que microscopique tapi au cœur de toute cette sphère noire environnante.

Et cette partie noire dans l’image, ce n’est pas le trou noir? Non. Ce noir n’est même pas un objet, ce n’est que du vide entourant le trou noir qui, je le répète, est infinitésimalement petit. Cette région noire est occasionnée par deux phénomènes créés, évidemment, par la présence d’un trou noir. La partie la plus centrale, environ le tiers du rayon, c’est ce qu’on appelle l’horizon du trou noir, ou l’horizon des événements. Tout ce qui s’approche d’aussi près du centre ne pourra jamais échapper à son attraction gravitationnelle, pas même de la lumière. C’est pourquoi la noirceur de cette sphère est totale et absolue et est d’autant plus grosse que le trou noir central possède une masse importante. La partie noire plus externe, on l’appelle, à tort, l’ombre ou l’ombrage du trou noir. On ne voit pas de démarcation entre les deux zones noires. Je dis «à tort» puisqu’un point infiniment petit ne peut faire qu’une ombre infiniment petite. On aurait été plus avisé d’appeler cette zone «la démarcation» du trou noir.

Le halo orange autour de la zone noire est son disque d’accrétion. Un trou noir en rotation aplatit sous forme de disque toute masse gazeuse ou solide qui a eu le malheur de trop s’en rapprocher. Il avalera cette matière un peu à la fois, faisant grossir sa masse et la surface de la sphère noire inconsistante l’entourant.

Vous vous dites peut-être que c’est une analyse digne du Corbot. En précisant certains faits, je semble vouloir dégonfler à tout prix l’importance du succès. Non, je le ramène simplement là où il doit se situer dans l’échelle des événements marquants. Ce cliché ne méritait pas les éloges dithyrambiques du genre: «Il y a eu un monde avant cette image et il y en a un autre après».

Holà! Wo les moteurs! Calmez-leur le pompon à cette équipe ou à la meute de journalistes en quête de la primeur du siècle. Le seul véritable grand succès de l’EHT est d’avoir réalisé un interféromètre des dimensions de notre planète possédant la résolution et la sensibilité nécessaires pour débusquer cet objet céleste. Elle n’a pas inventé l’interférométrie non plus, elle a simplement amélioré ses capacités par des techniques innovantes. C’est d’abord et avant tout un succès purement technique, pas scientifique. Je ne lui enlève aucune valeur, mais je refuse qu’elle s’arroge ou qu’on lui attribue la paternité de la première preuve de l’existence d’un trou noir, vraie image, mais fausse preuve de surcroit.

Bon, ça vous explique peut-être pourquoi j’ai tant attendu avant de vous faire part de mon opinion. J’ignorais, évidemment, comment les journalistes traiteraient le sujet, même si je m’en doutais un peu. J’ai lu et entendu beaucoup de bons articles et reportages. J’ai également été témoin de bien des stupidités. Faut croire qu’elles viennent comme les chaussures, toujours en paires, les uns sans les autres.

Je croyais que l’équipe dévoilerait tout d’abord une image de Sgr A*, le trou noir formant le cœur de notre propre galaxie, beaucoup plus petit que celui de M 87, mais autrement plus près de nous. Cela viendra probablement bientôt. L’image qu’elle a préféré montrer s’avérait probablement plus nette que celle de Sgr A* et pour une première, l’équipe a choisi la plus impressionnante des deux.

L’EHT continue ses travaux et espère encore augmenter la qualité de ses images. Le trop attendu télescope spatial James Webb viendra changer la donne lorsqu’il daignera enfin flotter dans l’espace bien loin de la Terre. La résolution de l’interféromètre s’améliorera d’un facteur aussi important que celui de l’EHT sur ses prédécesseurs. Et là, peut-être, commencerons-nous à réaliser de véritables percées scientifiques en ce qui concerne la frontière actuelle de nos connaissances sur la physique des trous noirs.

Le trou noir s’en vient !

Titre alarmiste, je sais. J’aurais dû titrer «L’image du trou noir s’en vient». Voilà à peine plus d’une semaine, j’écrivais un article dans lequel je cassais du sucre sur le dos de l’équipe de l’EHT pour avoir promis l’image réelle d’un trou noir en 2017, puis en 2018, et ensuite pour avoir gardé le silence depuis près de 9 mois.

Vous pourriez croire que mon article de la semaine passée était «arrangé avec le gars des vues» (expression chère à mon père lorsque la fin d’un film tombait un peu trop bien, afin que le bon gars puisse toujours gagner, sans égard à l’improbabilité des événements). Qui sait si mon article était véritablement dû à la chance pure, à une probabilité réaliste ou si j’ai profité d’informations non publiques?

event-horizon-telescope

Dans moins de deux jours, l’équipe de l’EHT a convié la presse internationale à une annonce exceptionnelle. Ça ne prend pas la tête à Papineau (expression québécoise consacrée) pour comprendre ce qu’ils veulent nous révéler. Ils vont nous montrer une image du trou noir qui se terre au cœur de notre Galaxie, le fameux Sgr A*. Tout le suspens ne se situe pas à ce niveau, mais ce à quoi l’image du trou noir ressemblera. Bien des gens ont misé sur le fait qu’on ne verra rien de semblable aux belles simulations numériques et je suis pas mal en accord avec ceux-ci.

Mon scepticisme ne se situe pas au niveau de l’existence du monstre galactique situé en plein cœur de la Voie lactée, je suis pas mal certain qu’il existe réellement. Je me questionne sur son apparence, sur ce que révèlera l’image prise de lui.

Supermassive black hole with torn-apart star (artist’s impress

Noir. Le trou noir sera noir, me direz-vous. Ce serait plutôt logique qu’un trou noir réputé pour ne rien recracher de ce qui a traversé son «horizon des événements», lumière incluse, paraisse noir. Et pourtant, un trou noir de cette masse, 4 millions de Soleils, qui bouffe des nappes de gaz ayant eu le malheur de s’aventurer trop près, risque de nous surprendre.

Tout d’abord, on en sait très peu sur sa vitesse de rotation. Comme tout ce qui se trouve dans l’Univers, ce trou noir tourne sur lui-même. Son environnement immédiat est affecté par cette vitesse de rotation et le résultat pourrait nous surprendre.8300758-3x2-700x467

Il faut savoir que cette image n’est pas un instantané, mais un montage très complexe de données diverses prises par tout un tas de télescopes différents, à de moments différents, à des longueurs d’ondes différentes, couplés en interféromètres simples ou multiples.

Ensuite, j’ai toujours douté de l’exactitude des représentations théoriques des effets relativistes. Quelque chose me dit que la vraie vie fera apparaitre une complexité bien plus grande et donc un trou noir bien moins évident à décortiquer et à analyser.

6848274_44f7c67a15bc4925d23231d69364fab11b3928b4_1000x625

Et enfin, même avec tout le respect qu’on doit à ce cher Einstein pour ses équations qui ont révélé la potentielle existence de ces monstres galactiques aux couleurs du Corbot, les trous noirs fricotent aussi bien du côté relativiste de la physique que du côté quantique et c’est là tout son intérêt. Cet objet unique en son genre réussit à exister en poussant les deux théories antagonistes dans leurs derniers retranchements.

Exprimé autrement, le trou noir établit un pont qui n’existe pas actuellement entre nos deux théories et seulement pour cette raison, l’image qu’on s’attend de lui ne peut pas parfaitement lui ressembler.

MIT-Blackhole-Jet_0

Dans moins de deux jours, on en saura un peu plus sur Sgr A*, mais il faut également s’attendre à ce que nous nous forgions tout un tas de nouvelles questions à son sujet. C’est ainsi que progresse la science, par théories et par preuves observationnelles, et on recommence sans jamais voir la fin.

Si l’équipe de l’EHT a réussi un petit miracle et qu’elle nous dévoile une image à la hauteur des attentes, on le saura assez rapidement. Si elle est seulement parvenue à obtenir un résultat duquel aucune conclusion ne peut être tirée et ainsi à renvoyer la balle vers une autre expérience encore plus ambitieuse, on le saura aussi.

Soyez toutefois certain que je ne manquerai pas l’occasion de commenter le contenu de cette conférence de presse dès que j’aurai le temps de l’analyser suffisamment pour écrire quelque chose de personnel et, espérons-le, intelligent, à son sujet.

Temps tridimensionnel

Le temps, apparemment si simple à comprendre, est bien plus complexe qu’il n’y parait. Einstein a formalisé l’aspect bidimensionnel du temps avec sa théorie de la relativité restreinte. Le temps est relatif aux voyageurs les uns par rapport aux autres. Si les horloges battent la mesure régulièrement sans faillir, elles ne s’entendent pas sur un temps commun dès qu’il existe des différences de vitesses ou de champ gravitationnel entre elles.

Ce que nous appelons le temps, celui qu’on ressent, n’est qu’une composante du « Temps » einsteinien. Une fois de plus, il faut se rabattre sur le théorème de Pythagore pour comprendre le temps selon Einstein.

TaTrTi

Dans la figure précédente, la ligne horizontale tr représente le temps relatif entre 2 objets. La ligne verticale ti représente le temps imaginaire, la composante du temps perdu dans la différence de temps entre 2 objets qui ne se déplacent pas à la même vitesse ou qui ne partagent pas le même champ gravitationnel.

TaTrTi2

Les différentes sommes vectorielles des 2 temps tr et ti, les lignes diagonales grises ta pour le temps absolu, restent invariables en longueur, car si tr augmente, ti diminue et vice versa. C’est ce qu’on appelle l’invariance de Lorenz. Le temps (absolu) ne varie jamais en longueur, seulement en direction.

Mais si nous poussons ce concept du temps juste un peu plus loin, plutôt que de nous restreindre à voir le temps en 2 dimensions, que se passerait-il si, dans les faits, le temps était tridimensionnel? L’invariance de Lorenz, ou si vous préférez, la somme vectorielle des 3 composantes doit cependant encore rester constante, donc d’une longueur identique, peu importe sa direction spatiale. Ce principe fait en sorte que la vitesse de la lumière c reste invariable, peu importe le référentiel.

TaTrTiTj

Lorsque tj, la troisième composante de ce Temps, vaut zéro, on retrouve la loi de la relativité restreinte. Lorsque cette composante tj n’est pas nulle, tr et ti raccourcissent pour conserver la longueur invariable du temps absolu. Une horloge ne ressent pas l’effet de cette troisième dimension temporelle, tout comme elle ne ressent pas la deuxième dimension, elle continue de battre la mesure au même rythme. Toutefois, ce nouveau vecteur temporel pourrait expliquer un phénomène astrophysique appelé le « décalage vers le rouge » de galaxies.

Puisque la vitesse de la lumière reste invariable dans tous les référentiels, si la troisième composante du temps tj a une certaine longueur, quelque chose doit avoir varié et c’est la fréquence de la lumière, autrement dit, sa couleur.

Le décalage vers le rouge observé chez les galaxies distantes, d’autant plus grand que les distances entre elles et nous sont importantes, pourrait donc dépendre de deux facteurs et non pas d’un seul. Le premier facteur est celui que nous connaissons déjà, le changement de fréquence proportionnel à la vitesse d’éloignement de ces galaxies, l’effet Doppler. Cependant une partie importante des décalages observés pourrait dépendre du troisième facteur temporel.

https---blogs-images.forbes.com-startswithabang-files-2016-03-1-JTMUwFeDxeDp-yi2lqxLLw-1200x820

Si tel était le cas, nous pourrions reléguer aux oubliettes, ou à tout le moins minimiser l’effet de la constante cosmologique, autrement dit la fameuse « énergie noire » de laquelle on ne connait rien. La nouvelle interprétation de nos observations actuelles serait que l’Univers ne serait pas en expansion aussi rapide que cela peut nous paraitre, voire à la limite sans expansion du tout.

image-3

S’il n’était pas décédé, Fred Hoyle jubilerait. C’est celui qui, sous le coup de la dérision, a inventé le terme Big Bang pour se moquer de cette théorie qui fait aujourd’hui la quasi-unanimité chez les physiciens. Lui défendait sa propre théorie, celle de l’Univers quasi stationnaire et la troisième dimension temporelle pourrait bien lui donner raison.

bigbang

Il reste une question à laquelle il faut répondre. La longueur de cette fameuse troisième composante du temps serait due à quoi? Qu’est-ce qui la fait varier et qui influencerait la fréquence de la lumière?

Et si le temps lui-même créait la longueur de ce vecteur? On l’appellerait le « vecteur du temps qui passe ». Imaginons que plus le temps passe, plus ce troisième vecteur de temps s’allonge. Il serait en quelque sorte la mesure de l’âge de l’Univers.

En se débarrassant de cette douloureuse épine qu’est l’énigmatique, l’hypothétique, la dérangeante énergie noire en lui substituant le principe d’un temps tridimensionnel, nous attaquons la cosmologie sur de toutes nouvelles bases, car tout change, l’âge de l’Univers, ses dimensions et surtout son passé, son présent et son avenir.

univers-ro

J’y reviendrai, car je sens sur vous l’effet du temps, celui que vous venez de prendre pour lire et tenter de comprendre cet article. Comme toujours, ne soyez pas timorés de commenter ou de poser des questions.

Vivons-nous dans un trou noir ?

Je mets tout de suite les points noirs sur les i. Le trou noir dans lequel nous vivrions ne serait rien de moins que notre Univers. J’aurais pu intituler mon article : « L’Univers est-il un trou noir ? » Ainsi, sortez immédiatement de votre esprit toutes les autres interprétations, autant celles de natures socio-économiques que salaces.

Ce qui amène les scientifiques, dont les cosmologistes, à s’interroger de la sorte, ce sont certains rapprochements possibles entre les deux. Je ne reviendrai pas sur l’ensemble des concepts théoriques des trous noirs, seulement sur celui qui concerne une vision « extérieure » qui est sa capacité de retenir infiniment ce qui se rapproche en deçà d’un certain rayon de son centre.

Donc, si notre Univers, là où nous vivons, correspondait à l’intérieur d’un trou noir, nous ne pourrions jamais en sortir. Ce concept de l’emprisonnement absolu est déjà considéré comme étant une particularité de notre Univers, sinon ce ne serait pas un Univers. Voilà le premier point commun visiblement attesté, même s’il n’est que supposition.

Partant de là, il est possible de déterminer si notre Univers est un véritable trou noir en mesurant ses dimensions et sa densité moyenne. Plus les dimensions d’un trou noir croissent, plus sa densité diminue. Il est donc possible de corréler les deux. Et si ce que nous savons sur les dimensions et la densité de notre Univers est juste, il est donc possible de confirmer ou d’infirmer le principe d’un Univers trou noir.

Densité moyenne de l’Univers

Avec une densité moyenne établie par observation à 5 atomes d’hydrogène par mètre cube, la matière dans l’Univers est passablement ténue. Ce chiffre fait fi de tous les autres atomes considérés comme marginaux, y compris l’hélium même s’il contribue à environ 10 % des atomes de l’Univers.

Dimensions de l’Univers

Le problème survient surtout lorsqu’on veut connaitre les dimensions de notre Univers. Il n’y a aucun moyen de vraiment les connaitre.

Expansion de l’Univers

Puisque l’espace est en expansion depuis le Big Bang survenu il y a de cela 13,8 milliards d’années, ce n’est pas seulement la frange limite qui s’éloigne, c’est chaque atome d’espace qui laisse place à d’autres atomes d’espaces autour de lui, contribuant à faire gonfler l’espace global de manière ahurissante. Ainsi, l’expansion de l’espace engendre des effets rendant sa mesure impossible.

Vitesse de la lumière

Puisque la lumière prend un certain temps à voyager dans l’espace, il peut exister des endroits éloignés de l’espace dont la lumière ne pourra jamais nous atteindre puisque l’expansion de l’espace entre ces lieux et la Terre grandit trop vite pour laisser le temps à la lumière de parcourir le chemin supplémentaire. Ces portions de notre Univers nous resteront pour toujours inconnues.

Dimensions de l’Univers observable

À défaut de connaitre ce qui existe au-delà de ce que la vitesse de la lumière nous permet de distinguer, on est contraint de ne pouvoir mesurer que ce qui est observable. Certains cosmologistes estiment cette dimension à 93 milliards d’années-lumière de diamètre et ce ne serait que l’Univers observable depuis la Terre, pas l’Univers entier.

Univers infini

L’Univers pourrait être infini, cependant tous les infinis indisposent passablement une grande quantité de physiciens qui voient dans ce terme des relents culturels religieux inappropriés, ils préfèrent le croire fini, tout en avouant leur ignorance sur sa possible taille réelle.

Le problème du contenant

D’autre part, si on considère cette valeur comme si nous la mesurions à partir de l’extérieur de l’Univers, on considère alors que le contenu de l’Univers s’étend dans un plus grand contenant que lui-même. Il faudrait donc englober ce contenant supplémentaire dans la mesure des dimensions de tout l’Univers. Mais où cesse ce jeu des poupées russes ?

Le problème de l’observateur

En physique, un bon observateur doit rester indépendant de ce qu’il observe, sinon ses constatations deviennent contestables. En faisant partie de l’Univers que nous tentons de mesurer, le statut d’observateur fiable nous est interdit et ainsi nos conclusions resteront toujours douteuses.

Expansion égale accrétion

Un trou noir accroit ses dimensions seulement s’il est en train de bouffer de l’énergie sous n’importe quelle forme. Puisque notre Univers grandit, s’il est un trou noir, il serait en train d’avaler quelque chose venu se promener dans son entourage extérieur. Mais dans ce cas, nous devrions voir de la matière ou de l’énergie apparaitre quelque part dans l’Univers. Toutefois, étant donné que nous n’avons pas accès à voir tout l’Univers, il devient difficile de réfuter l’existence de cette activité. Tout ce qu’on peut dire, c’est qu’on n’a jamais rien vu de tel dans la portion de l’espace qui nous est visuellement accessible. L’astrophysicien Fred Hoyle, le père du terme « Big Bang », parlait de notre Univers en lui donnant la propriété de faire apparaitre subitement de la matière. Cette vision correspondrait à celle d’un Univers trou noir en train de bouffer des mondes externes. Malheureusement, cet aspect est contredit par la diminution de la température du fond cosmologique qui devrait augmenter avec la quantité de matière alors qu’elle est en diminution constante depuis le Big Bang.

Né d’un trou noir

Ne pas confondre un Univers étant un lui-même un trou noir et un Univers né d’un trou noir. Cette dernière hypothèse est souvent évoquée pour expliquer l’événement Big Bang. L’Univers serait une fontaine blanche, une éjection issue d’un trou noir. Le problème est que personne n’a réussi jusqu’à présent à m’expliquer comment un trou noir peut créer une fontaine blanche alors que rien ne peut lui échapper. Lui aurait-on inséré un bâton dans son trou noir et il aurait vomi ses tripes ? Dans ma tête, ceux qui ont inventé le concept de fontaine blanche effectuent une piètre tentative pour réhabiliter la nature définitive et irrécupérable d’un trou noir qui est de dévorer sans restituer… ou si peu lorsqu’il s’évapore en émettant quelques particules de-ci de-là, mais rien pour créer une fontaine de jouissance blanche pour physiciens en manque de libido d’idées.

Mon opinion

Je considère notre Univers en vase clos et à ce titre, il se comporte comme un trou noir en ne laissant rien échapper. Cependant, il devrait posséder d’autres caractéristiques communes avec ces monstres cosmiques qu’à mon avis, il ne partage pas. Ainsi, notre Univers ne serait pas un véritable trou noir au sens einsteinien du terme.

La gravitation

J’aimerais vous partager un peu de mon enghousisame pour la gravitation, car ce phénomène, cette force, cet effet, ce sujet d’étude est plus que fascinant.

socrate-gorgias

En Grèce antique, elle n’était pas universelle puisque les observations montraient que la fumée montait. Ainsi, tout ne tombait pas sur Terre. Ils voyaient également que la Lune ne tombait pas. Les objets possédaient donc un lieu naturel auquel ils se raccrochaient, soit la Terre, soit le ciel.

nyf30hn5iXlt45k6fhP-o

Par la suite, Galilée montre que la chute des corps est universelle et pourtant l’expérience avec des corps légers et lourds ne pouvait pas le démontrer à cause de la résistance de l’air plus perturbante pour les objets très légers. Dans le vide, tous les corps tombent effectivement de façon identique, mais pas sur Terre. Et pourtant, il ose le prétendre grâce à des exercices de pensée, mais certainement pas grâce à une expérience qui aurait prouvé qu’une plume tombe à la même vitesse qu’une pierre ! Sa démonstration à la tour de Pise est du folklore.

Newton fait faire un bond de géant à la gravitation avec sa loi montrant que c’est une force qu’exercent les objets massifs entre eux. Il en déduit une formule montrant que cette force est proportionnelle à la multiplication des masses et diminue en fonction du carré de la distance séparant les deux objets.

be105d73-c473-4250-8569-9b49213418ad

Mais le plus impressionnant est qu’il établit un parallèle entre la chute des corps sur Terre et les orbites célestes en affirmant que la Lune tombe bien sur la Terre, mais sa rotation autour de notre planète fait qu’elle ne cesse de nous rater. Il découvre l’existence d’une constante gravitationnelle (G) identique pour tous les corps s’attirant dans l’Univers. La force gravitationnelle s’exerce sans aucune limite de distance et elle est instantanée. Il sait que cette force dépend des masses des objets, mais il ignore ce qui fait que la masse attire la masse.

Einstein saute ensuite sur l’occasion de déclasser la théorie de Newton en sachant que la force gravitationnelle ne peut pas s’exercer instantanément puisque rien ne peut dépasser la vitesse limite correspondant à la vitesse de la lumière dans le vide. Il a compris que la théorie de Newton n’est qu’une approximation d’une théorie plus générale. Il cesse de voir la gravitation comme une force. Il établit une équivalence entre la masse inertielle et la masse pesante. Il considère que la masse déforme l’espace-temps et c’est cette déformation d’autant plus importante que la masse est grande et dense qui fait courber les trajectoires des objets, leur imposant de tourner le long d’une courbe elliptique pour les planètes gravitant autour des étoiles et des lunes autour de leurs planètes.

albert-einstein-9285408-1-402

La théorie du grand homme parvient même à prévoir que le temps est modifié par le champ de gravité. Aujourd’hui, il suffit de surélever une horloge atomique de 20 cm pour commencer à apercevoir un décalage entre celle-ci et une autre restée bien en place. Il reste cependant encore une grande inconnue dans cette théorie, pourquoi la masse plie-t-elle l’espace ? Et si la gravitation n’est pas une force, comment la masse parvient-elle à déformer l’espace autour d’elle sinon en lui appliquant une force qui l’étire ?

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

Mais le plus gros problème avec la théorie de la gravitation d’Einstein qu’on appelle la relativité générale se situe dans les extrêmes. Elle prédit correctement la formation des trous noirs, mais elle établit une densité centrale valant l’infini, ce qui cesse d’être de la physique. Même chose pour le Big Bang, la relativité générale considère qu’au temps zéro, l’Univers était infiniment dense, infiniment chaud et infiniment petit. Une théorie qui prédit des infinis n’est plus une théorie et là encore, on peut considérer qu’il existe une meilleure théorie que la relativité générale.

agujero_negro 3

Afin de se dépêtrer de ces dérangeants infinis, les physiciens inventent d’autres théories dont l’une semble prometteuse, la gravitation quantique à boucles. Cette théorie cesse de voir l’espace-temps comme étant continu, il devient discret, comme des atomes tous identiques d’espace-temps. On obtient alors des aires et des volumes minimaux et discrets, une sorte de maillage tridimensionnel où tous les petits volumes incompressibles sont reliés entre eux par un réseau de spins. Le plus grand spécialiste de cette théorie est l’Italien Carlo Rovelli. L’Américain Lee Smolin de l’Institut Perimeter au Canada a également apporté une importante contribution. Plus récemment on entend beaucoup parler du Français Aurélien Barrau, une étoile montante de cette théorie et un excellent vulgarisateur. Je le félicite également pour ses sorties remarquées en faveur de l’environnement.

Mais la gravitation n’a pas terminé de nous surprendre et de nous étonner. Récemment, la mise en lumière du boson de Higgs et du champ de Higgs nous éclaire un peu plus sur le mécanisme engendrant la masse. Cependant, des questions fondamentales demeurent, dont à savoir pourquoi les particules ont toutes des masses différentes et pourquoi elles ont les masses qu’on leur connait ?

Mais il y a pire. On ignore si la gravitation existe aux petites échelles. Et quand je parle des petites échelles, je ne fais pas seulement allusion au niveau des particules élémentaires, mais à tout ce qui se situe en deçà du dixième de millimètre à cause d’autres forces s’exerçant à ces échelles et qui masquent très efficacement les éventuels effets de la gravitation. Pour savoir si deux protons s’attirent par la force gravitationnelle, il faudrait pouvoir la discerner à travers la force électromagnétique qui les repousse avec un facteur 1030 fois plus important.

En résumé, on sait calculer plein de choses en rapport avec la gravitation, mais on ignore encore totalement ce qui la constitue et même si elle existe réellement. Si la gravitation reste l’effet le plus évident à l’échelle humaine, elle demeure la plus mystérieuse de toutes les interactions.

Intrication et télépathie

En français, intrication signifie un enchevêtrement de choses, un fouillis complexe et difficile à démêler. En physique quantique, l’intrication est un état particulier que peuvent prendre des particules et elle représente certainement l’une des plus étonnantes particularités contre-intuitives de cette physique de l’élémentaire.

depositphotos_166179300-stock-video-quantum-entanglement-signals-in-the

Prenons deux électrons et faisons-les interagir de telle sorte qu’une des particularités de l’un soit liée à celle de l’autre. C’est plutôt facile à obtenir. Deux électrons sur une même orbitale «s» autour d’un noyau ne peuvent pas posséder un même moment cinétique orbital (spin) à cause du principe d’exclusion de Pauli.

Spini

Si le spin du premier va dans un certain sens, celui du second sera nécessairement dans le sens contraire. Ces deux électrons sont maintenant intriqués l’un à l’autre et tout changement du spin de l’un va nécessairement entrainer le changement du spin de l’autre. C’est normal, direz-vous, puisqu’ils partagent la même orbitale et vous vous souvenez que le principe d’exclusion de Pauli le défend.

Jusqu’ici, rien de compliqué à comprendre. Mais voilà où la physique quantique devient franchement bizarre. Séparons les deux électrons et envoyons-les à très grande distance l’un de l’autre, la distance que vous voulez. Faites-les s’associer à des noyaux, créez des liens chimiques, bref donnez-leur une existence propre.

ob_bb2cea_etanglement-quantique.jpg

Puis mesurez le spin du premier électron. Vous saurez alors que le spin du second sera nécessairement son inverse, peu importe là où il se retrouvera par rapport au premier. Ils sont à jamais intimement intriqués.

Il ne faut pas confondre l’intrication avec la complémentarité. Si vous possédez une paire de gants et que vous envoyez séparément dans des valises n’importe où dans le monde, si vous en ouvrez une et découvrez le gant gauche, vous saurez immédiatement que l’autre est celui de droite. Mais l’intrication est totalement autre chose puisqu’elle permet de changer un gant pour son contraire et l’autre se transformera lui aussi et instantanément, indépendamment de la distance entre les deux.

conf-einstein-relativite

Cela semble défier la vitesse limite de la lumière et Einstein a bien tenté de trouver une cause cachée à cet «effet fantomatique à distance», disait-il. Le grand homme avait tort. Des expériences menées après sa mort, dont celle du physicien français Alain Aspect en 1983, ont prouvé qu’il n’existait aucune cause cachée. L’intrication quantique existe bel et bien.

ASP00008-Alain-Aspect

Comment peut-on comprendre ce phénomène franchement bizarre? Une façon de donner à l’esprit une explication rationnelle est de se remémorer le fait qu’une particule élémentaire est également une onde. Celle-ci n’a aucune limite de distance puisqu’elle n’est pas localisée dans un lieu précis. Les deux électrons intriqués partagent cette même onde. En transformant les propriétés de l’un d’eux, l’autre ne peut faire autrement que de s’y conformer et de modifier sa même propriété pour que l’onde globale reste inchangée (fonction d’onde).

Cet effet quantique pourrait avoir une manifestation macroscopique. On sait qu’une mère et son bébé ont partagé une intimité qui aurait possiblement permis d’intriquer de la matière d’un à l’autre. Une fois l’intrication existante, des changements d’état chez l’un peuvent se transmettre instantanément chez l’autre, engendrant une transformation partagée. Cette intrication ne serait pas limitée aux mères et à leur enfant, mais à toute interaction humaine. Et voilà comment une physique moderne pourrait expliquer certains phénomènes ésotériques que cette même science décriait comme étant du pur charlatanisme.

télépathie.png

Toutefois, aucune preuve formelle n’a encore été apportée à cet effet, mais l’intrication quantique a donné aux physiciens une bonne raison de cesser de rire des théories autrefois considérées comme totalement absurdes puisqu’elles auraient violées toutes les lois de la Nature, oubliant au passage que cette dernière ne se pliait pas à leurs désirs et à leurs croyances. Toutefois, la télépathie ne serait pas une transmission entre deux esprits comme on est habitué à se l’imaginer, mais à un partage préexistant d’états quantiques.

Dans le prochain article, j’aborderai une théorie étonnante découlant de ce principe.

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Une relativité incomprise

Bon, je veux régler un cas une bonne fois pour toutes. Malheureusement, les fourvoiements ont la vie longue. Certains scientifiques ne comprennent pas la physique relativiste et ils disent de grosses conneries lorsqu’ils sont interviewés.

Je vais donner un exemple qu’ils utilisent souvent. Notre Galaxie, la Voie lactée a un diamètre de près de 100000 années-lumière. Ça signifie que si une source lumineuse est à sa périphérie et qu’on l’observe à partir du point antipodal, les signaux lumineux captés auront été émis voilà 100000 ans. Ça, c’est vrai.

Où ça se gâte, c’est lorsque les personnes interviewées placent des astronautes dans un vaisseau spatial pour leur faire traverser la Galaxie de part en part à une vitesse proche de la lumière. Ils disent alors que ça leur prendra 100000 ans pour faire ce trajet. Ainsi, ils auraient besoin d’un amas de générations de voyageurs avant d’arriver à destination. Mais ce qu’ils disent est totalement faux, et pas qu’un peu.

Albert_Einstein_1947

Lorsqu’on file à des vitesses proches ou égales à la vitesse de la lumière, ce ne sont plus les lois de la physique classique qui s’appliquent, mais celles de la relativité restreinte mises en évidence par Einstein. En fait, la relativité restreinte s’applique toujours et à tout déplacement, mais puisqu’elle est plus compliquée à calculer que les lois de Galilée, on utilise ces dernières lorsqu’on se meut à la vitesse d’un bœuf.

Que dit alors la relativité restreinte à propos d’un voyageur qui filerait à la vitesse de la lumière (en postulant que c’est possible)? Eh bien! celui-ci traverserait notre Galaxie d’un diamètre mesurant 100000 années-lumière en exactement… zéro seconde. Ne me frappez pas, c’est la faute à la relativité restreinte, pas à moi. Un voyage effectué à la vitesse de la lumière (dans le vide) est instantané, peu importe la distance parcourue. Le voyageur ne vieillit pas d’une seule fraction de seconde.

En revanche, si un deuxième individu attend le voyageur faisant un trajet aller-retour, cet observateur devra effectivement patienter 200000 ans avant de voir réapparaitre le voyageur. C’est ça la « relativité » du temps telle qu’Einstein l’a décrite. Pour le voyageur luminique, son trajet aller-retour d’un rebord à l’autre de la Galaxie n’aurait même pas duré une seconde tandis que pour la personne restée sur ce rebord de la Voie lactée, elle l’aura attendu le temps prévisible, soit 200000 ans.

voie-lactee-concept.jpg

Ainsi, tous les scientifiques qui ne respectent pas cette relativité lorsqu’ils considèrent des déplacements dits « relativistes » se gourent et induisent les téléspectateurs en erreur. Un voyageur n’a pas besoin de 100000 ans pour effectuer un voyage de 100000 années-lumière ou 200000 années-lumière, ou n’importe quelle distance s’il se déplace à la vitesse de la lumière. Il fera tous les trajets en exactement 0 seconde.

La théorie de la relativité restreinte découverte par Einstein n’est pas de la science-fiction. Elle est bien réelle, exacte et incontestable puisque prouvée de multiples façons. Je ne vous demande pas de me croire sur parole. Beaucoup des contemporains du génial physicien ont également rejeté sa théorie, la croyant totalement aberrante. Ils avaient tort, tout comme les gens interviewés qui continuent d’appliquer la mécanique de Galilée plutôt que celle d’Einstein même si les vitesses en cause sont de l’ordre de la vitesse de la lumière dans le vide.

Mais il doit bien y avoir une erreur quelque part ! Pas exactement une erreur. On parle ici d’un cas limite. Un voyageur est constitué d’atomes et ces derniers possèdent une masse. Or, pour inculquer à une masse une vitesse égale à celle de la lumière, ça prend une énergie infinie. Un voyageur ne pourra donc jamais atteindre cette vitesse limite, mais il peut s’en rapprocher.

Ainsi, son voyage d’une extrémité à l’autre de notre Galaxie ne durera pas zéro seconde, mais il ne sera pas non plus de 100 000 ans.

FormuleRelativité.png

Pour les afficionados des formules, voilà à quoi le temps relatif du voyageur (t’) ressemblera selon le temps sans tenir compte du principe de la relativité (t) et selon sa vitesse (v) par rapport à la vitesse de la lumière (c).

Si la vitesse du voyageur (v) est égale à celle de la lumière (c), alors on obtient la racine carrée de zéro multiplié par t, ce qui donne effectivement zéro seconde.

On voit ainsi que plus le voyageur se rapproche de la vitesse de la lumière, plus le temps s’étire, même si lui continue de vieillir au même rythme.

Photo de A. Einstein : Oren Jack Turner, Princeton, N.J.
Voie lactée : Astrosurf.com

 

Rasoir d’Occam

Le principe du rasoir d’Occam est utilisé en sciences pour départager différentes hypothèses pouvant toutes expliquer un phénomène encore incompris.

Les hypothèses possèdent chacune un certain degré de complexité. Très souvent, la théorie avançant le plus bas taux de complexité est souvent considérée comme la vraie, celle qui s’avèrera exacte après les expérimentations ou observations.

Mais le rasoir d’Occam n’apporte pas une preuve, il nous montre simplement quelle direction privilégier pour optimiser nos chances de découvrir la vérité plus rapidement.

Il est survenu à de multiples reprises que le rasoir d’Occam n’ait pas fonctionné alors que la vérité s’était dissimulée dans des replis ombrageux de théories complexes.

On assiste alors à des changements de paradigmes. On définit une théorie sur de nouvelles bases et on englobe l’ancienne théorie comme une approximation de la nouvelle.

Ce fut le cas avec les théories de la relativité restreinte et générale qui sont éminemment plus complexes que les théories de Galilée et de Newton.

Faisons un pas en arrière et réécrivons l’histoire en inventant une situation qui ne s’est pas produite, mais qui aurait pu. Imaginons-nous au temps de Newton. Einstein lui rend visite et il propose sa théorie de la relativité générale pour expliquer les phénomènes célestes et terrestres de la gravitation. Newton lui propose sa théorie de la gravitation qui s’avère beaucoup plus simple et intelligible.

En appliquant le rasoir d’Occam sur ce conflit opposant deux théories permettant d’expliquer certains phénomènes, on est alors obligé d’opter pour la théorie de la gravitation de Newton puisque aucune observation à cette époque n’aurait pu prouver l’une meilleure que l’autre. Les deux théories auraient donné des résultats comparables, mais celle de Newton est d’une complexité enfantine par rapport celle d’Einstein.

Pourtant on connait la suite. La théorie de Newton a été déclassée par celle de son successeur. Si on persiste à utiliser la première, c’est simplement qu’au quotidien, la précision de la seconde n’est pas requise.

Mais on doit l’admettre, le rasoir d’Occam ne fonctionne pas à tout coup. En fait, fonctionne-t-il vraiment ? Peut-être nous aide-t-il seulement à simplifier une réalité trop complexe pour être avalée en un seul morceau. Ainsi le rasoir d’Occam nous voilerait la vérité plutôt que nous la montrer.

Plusieurs scientifiques et penseurs ont payé un tribut très cher au nom du rasoir d’Occam. Je parlais de Ludwig Boltzmann dans un article précédent. Aujourd’hui je rajoute Alfred Wegener, le père de la théorie de la dérive des continents.

Une foi aveugle en quelque principe finit toujours par rouler ses adeptes dans la farine, le rasoir d’Occam y compris.

Nouvelle tentative ratée de prendre Einstein en défaut

La théorie de la relativité générale d’Einstein élaborée entre 1907 et 1915 est considérée comme étant la plus importante contribution d’un seul homme à la physique. Il reçut toutefois de l’aide de deux mathématiciens qui lui permirent de compléter son œuvre, Marcel Grossmann et David Hilbert. Cette théorie complexe nous présente un modèle sur la façon dont les objets déforment l’espace-temps pour, en contrepartie, faire bouger ces mêmes objets. Depuis, sa théorie tient bon contre tous les assauts, y compris les plus récents et les plus raffinés, dont l’expérience Microscope. Cette récente tentative cherche à prendre en défaut le postulat qu’a utilisé Einstein pour élaborer sa fameuse théorie.

Un postulat est une affirmation non démontrée servant de point de départ à l’élaboration d’une théorie. Dans le cas de la relativité générale, Einstein a postulé un principe d’équivalence entre lois physiques dans un référentiel tombant en chute libre dans un champ de gravitation et les lois physiques dans un référentiel inertiel.

On connait mieux la formulation suivante. Deux corps, quels qu’ils soient, tomberont de façon identique dans un même champ gravitationnel, peu importe leur masse ou leur densité.

L’expérience du satellite Microscope «Micro Satellite à traînée Compensée pour l’Observation du Principe d’Équivalence» consiste en deux cylindres imbriqués l’un dans l’autre faits de métaux différents, donc de densité différente. Si les deux cylindres tombent de façon identique dans le champ de gravitation, on ne constatera aucun changement dans leurs positions respectives. Dans le cas contraire, ils se déplaceront l’un par rapport à l’autre et le principe d’équivalence sera violé, mettant à mal la relativité générale, ce qui ouvrira la voie à établir une nouvelle théorie de la gravitation.

Pourquoi cette énième expérience sur le même sujet alors que toutes les précédentes se sont soldées par une confirmation du principe d’équivalence?

Tout d’abord, pour affiner les mesures puisque Microscope est cent fois plus sensible que les précédentes expériences. Une différence pourrait alors être perçue par des accéléromètres là où elle aurait échappé aux expérimentations moins précises.

L’autre raison est encore plus fondamentale. Les deux piliers de la physique actuelle se détestent mutuellement. La chromodynamique quantique et la relativité générale semblent décrire deux univers différents alors qu’elles font partie d’un seul et même monde, le nôtre. Pourquoi le comportement de la matière se modifie-t-il si drastiquement aux très petites et aux très grandes échelles, demeure un mystère total et très dérangeant.

Pourtant, les deux théories résistent jusqu’à présent aux multiples tentatives de plus en plus raffinées visant à prendre en défaut l’une ou l’autre, sinon les deux. La dichotomie actuellement observée agace, frustre et embête les physiciens qui n’y voient qu’un moyen de progresser vers une vérité cachée sous-jacente. Mais les deux édifices théoriques tiennent bon, malgré l’inventivité des expérimentateurs. Par exemple, le satellite Microscope a permis jusqu’à présent de vérifier le principe d’équivalence jusqu’à une sensibilité de 2 x 10-14 (0,00000000000002) et on espère améliorer cette sensibilité d’un facteur 20 d’ici peu (1 x 10-15).

Même si le principe d’équivalence reste toujours valide, cette expérience permettra d’éliminer d’autres théories concurrentes. Si, par contre, des différences commencent à apparaitre, la théorie des cordes (actuellement repoussée dans les cordes du ring) pourrait prendre du gallon puisqu’elle prédit une différence très faible entre la masse inerte (inertielle) et la masse grave (en champ de gravité).

Il est important de comprendre que toutes les théories ne sont qu’une modélisation de notre Univers et non une représentation exacte de ce qu’il est. Les nouvelles théories émanent des ambiguïtés des précédentes. Il n’est pas dit qu’un jour nous ayons réponse à tout à partir d’une seule théorie unifiée. Par contre, notre compréhension actuelle du comportement de notre monde ne nous satisfait aucunement, malgré notre capacité de prédiction permise soit par la relativité soit par la chromodynamique quantique. C’est comme demander à papa de nous répondre lorsqu’il est question de sujets d’ordre cosmique et à maman lorsqu’on discute d’atomes et de ses constituants. On rêve du jour où nos parents règleront leurs différents une fois pour toutes. Cela pourrait s’avérer impossible, mais jusqu’à présent, on a toujours réussi à trouver un terrain d’entente. C’est seulement lorsqu’on affine le sujet de conversation que de nouvelles différences apparaissent. Cette divergence actuelle résiste aux assauts de millions de théoriciens et expérimentateurs depuis près d’un siècle. Jamais nos efforts n’ont été aussi nombreux et perfectionnés dans le but de faire mentir la gravitation ou son adversaire composé des forces nucléaires faible et forte ainsi que de la force électromagnétique.

La schizophrénie dont est atteint le monde de la physique finira, espérons-le, à être un jour guérie. Pour ce faire, d’autres expériences devront être effectuées avec des moyens toujours plus ingénieux afin d’atteindre des degrés de précision inégalés.

Photo : europe1.fr

La théorie décrivant le mieux ma fille

Après une dizaine d’années d’un travail acharné et ininterrompu, un homme aux pensées non conformistes accouche d’une théorie révolutionnaire. Cent-deux ans plus tard, celle-ci reste toujours d’actualité et n’a même jamais été prise en défaut.

La théorie de la relativité générale est un monument érigé par un seul homme, un effort de pensée hors normes. Mais la théorie d’Einstein censée résumer la façon dont le cosmos fonctionne a supplanté son auteur.

En 1920, Schwartzschild calcule une solution à ses équations qui démontre que les étoiles ont un rayon critique en dessous duquel elles se transforment en trou noir. Einstein en est horrifié et espère que la Nature possède un système de censure lui évitant de générer ces monstres. Il a tort. Puis, on lui prouve que ses équations forcent l’Univers à s’étendre ou à se contracter. Une fois encore, horripilé par ce constat, il modifie ses équations pour les amener à décrire un Univers stationnaire, conforme à sa vision. Malheureusement, l’histoire se répète, de nouveau il se trompe. L’Univers ainsi que ses propres équations refusent obstinément de se comporter comme il le veut. C’est ironique de voir que son monde ne lui a jamais appartenu, ou si peu de temps. Son bébé s’est prestement échappé de son berceau et malgré tous ses efforts pour le ramener à la maison, sa création lui a prouvé qu’on ne possède rien, même pas ses propres idées.

Morale de cette histoire vraie, ne jamais sous-estimer le pouvoir d’une idée. Une fois lancée dans l’univers, elle possède sa vie propre et ses propres amours. Alors, pensez-y avant de diffuser vos réflexions. Elles pourraient vous surprendre et il sera ensuite trop tard pour fuir votre paternité. Il vous restera à prendre un verre de vin en vous disant que vous avez fait votre gros possible, mais que force est de constater qu’elles n’en font qu’à leur tête.

Finalement, la théorie de la relativité générale et ma fille, c’est du pareil au même.

Photo: Ciel & Espace