Relativité de l’existence

Bien que le titre utilise le mot « relativité », cet article traite plutôt de physique quantique. Non !Non! Ne disparaissez pas si vite, car l’effet que je décris aujourd’hui est plutôt étonnant, voire sidérant.

Imaginez Alice, une jeune fille très attentive. Elle observe un vide parfait. Ce vide possède donc une température de zéro Kelvin (0 K) qui est la température absolue. Pourquoi ? Parce qu’une température nait de particules qui s’entrechoquent. S’il n’existe aucune particule pour s’entrechoquer, alors rien ne peut générer de la température. Elle vaut donc 0 K (-273,15°C). Jusqu’ici, rien de très compliqué.

Prenons maintenant le petit ami d’Alice, il se prénomme Bob et il aime faire de la vitesse. Il embarque à bord d’une fusée pour impressionner sa flamme. Pour ne pas se causer trop de désagréments, il ajuste l’accélération du bolide à 1 G, c’est-à-dire que son corps ressent le même poids que s’il restait à la surface de la Terre.

new-glenn

Bob passe en trombe devant Alice qui continue de mesurer ce vide absolu plutôt que de s’intéresser aux exploits de son copain. Un peu frustré, mais tout de même curieux, Bob utilise lui aussi un appareil pour mesurer la température de ce vide envoûtant.

Une fois de retour auprès d’Alice, il la questionne sur ce qui la fascinait tant.

— Je m’intéresse au rien, au vide absolu dont j’ai précisément noté sa température. Il reste parfaitement à zéro Kelvin.

On-dit-que-la-CNV-c-est-pour-ne-pas-s-engueuler_imagePanoramique647_286

— Désolé de te décevoir, belle laborantine de mon cœur, mais j’ai également pris sa température et elle ne valait pas zéro Kelvin.

Les deux appareils sont pourtant parfaitement calibrés et l’un ne donne pas la même température que l’autre. Alors qu’Alice lit un zéro absolu, donc l’inexistence de particules, la lecture non nulle de Bob signifie qu’il a détecté des particules dans ce même espace censé être entièrement vide.

L’un des deux a-t-il tort ? Non. Les deux amis ont raison, mais dans leur propre réalité qui s’avère être différente, car leur état par rapport à ce vide n’est pas identique.

Alice n’accélère pas, tandis que Bob est en accélération constante. Ce seul changement crée des réalités distinctes pour le même espace. Dans un cas, le vide est totalement vide et dans l’autre cas, des particules existent et ce, pour le même lieu physique.

La réalité n’est pas la même pour tout le monde et elle dépend de l’accélération de chacun.

Ce phénomène théorique se nomme « l’effet Unruh » du nom du Canadien à l’origine de sa formulation et elle se présente ainsi.

Thba

Ne fuyez pas encore ! Cette formule, pas si barbare qu’elle y parait, se simplifie pour devenir parfaitement compréhensible. Mises à part les lettres de la température (T) et de l’accélération (a), tous les autres symboles sont des constantes qui peuvent être ignorées pour comprendre la relation qu’entretiennent T et a. Et voici le résultat final.

ta

En bref, la température (T) est proportionnelle à l’accélération (a).

Et pour expliquer la température non nulle que notre ami Bob a lue, son accélération de 1 G génère des particules dans ce vide, dans sa réalité propre, mais pas dans la réalité d’Alice qui est stationnaire. Ainsi, accélérer engendre une réalité distincte, une réalité différente de celle des autres.

L’effet Unruh n’a pas encore été détecté par l’expérience et ne le sera probablement jamais, puisque, vous pouvez vous en douter, il est d’une faiblesse extrême. Une accélération de 1 G n’engendre qu’une température de 4 x 10-20 Kelvin.

Mais engendrer peu d’effets n’est pas synonyme de rien du tout. Ici, c’est le principe qui importe. Plus on progresse dans nos connaissances sur l’univers et plus sa réalité pure et dure se désagrège. Avec l’effet Unruh, elle devient variable et relative à chacun d’entre nous en fonction de notre accélération.

Et justement, en parlant d’accélération, on sait depuis Einstein qu’il n’y a aucune différence entre se promener en fusée qui accélère à 1 G et être attiré par la gravitation terrestre en gardant les pieds bien campés au sol.

Dépendant du lieu où nous sommes sur Terre, la force gravitationnelle varie légèrement en fonction de la distance nous séparant du centre de la Terre et de la densité du matériel sous nos pieds. On peut alors dire que la réalité est différente pour chacun d’entre nous.

Bienvenue dans ma réalité qui n’est pas la vôtre !

Heureusement, direz-vous !

Platitude spatiale

Durant toute notre enfance, nous avons suivi avec intérêt ou, au contraire, avec amertume ou difficulté, des cours de géométrie durant lesquels nous avons calculé des angles de triangles totalisant 180°, nous avons appris que deux droites parallèles ne se rejoignent jamais et que si elles ne sont pas parallèles, elles finissent par se toucher en un seul point.

Même si cette formation date de longtemps, la majorité des gens pensent encore de cette façon. Dans la vie de tous les jours, cette géométrie est valable et on lui a donné le nom de géométrie euclidienne en hommage au célèbre géomètre grec Euclide.

Pourtant, ce que nos profs ont passé sous silence afin de respecter le cursus et nos prétendues capacités limitées à apprendre, et probablement parce qu’ils ne connaissaient rien d’autre, c’est que cette géométrie constitue une exception, un idéal jamais réellement atteint, une limite entre deux autres géométries qui se touchent exactement à cet endroit. En réalité, la géométrie euclidienne n’existe pas vraiment. Elle constitue simplement une approximation très pratique, car beaucoup plus simple que les sœurs siamoises opposées que sont les deux autres géométries non euclidiennes.

L’exemple le plus simple d’une géométrie non euclidienne est notre bonne vieille Terre. Au ras du sol et sur de courtes distances, les règles de la géométrie euclidienne semblent parfaitement exactes. Les triangles possèdent des angles totalisant 180°, les droites parallèles ne se touchent pas et si des droites se touchent, elles le font en un seul point.

couleur ours.png

Pourtant, il suffit de prendre de l’altitude et tracer de très grands triangles et de grandes droites pour constater qu’Euclide ne faisait que des approximations puisque la somme des angles d’un triangle formé de trois lignes droites au sol totalise plus de 180°. Deux méridiens sont des droites parallèles et pourtant ils se rejoignent. Et même si on les considère comme étant non parallèles, ils se recoupent aux deux pôles, et non juste une fois. La surface de la Terre étant convexe (sphérique), sa géométrie n’est pas euclidienne et les règles établies par ce génie du passé ne s’appliquent pas.

En utilisant des surfaces concaves plutôt que convexes, on obtient des triangles dont la somme des angles est inférieure à 180° et des droites parallèles qui elles aussi se rejoignent. Une selle de cheval et les toits de constructions s’y apparentant comme au Saddledome de Calgary sont de bons exemples de géométries concaves (hyperboliques) non euclidiennes.

6842e15a63827407284b31b3acd603b.jpg_1200x630.jpg

On comprend ainsi mes affirmations précédentes. La platitude géométrique est un mythe puisque rien ne peut vraiment être absolument plat.

Vous seriez probablement tenté de vous reporter à l’espace, à l’ensemble de l’Univers et à ses trois axes spatiaux. Selon vous, ils forment certainement des angles parfaitement droits entre chaque paire d’axes. Comment pourrait-il en être autrement ?

Ce concept était convenu avant les travaux d’un certain Albert Einstein qui publia en 1915 un article fondamental de physique qui devint la théorie de la relativité générale.

Sans entrer dans ses détails, elle contient un élément important se rapportant à la platitude spatiale. Il consiste dans le fait que l’espace se plie en présence de masse. Considérant que l’univers contient de la masse, il se replie de manière concave ou convexe dépendant de la quantité de matière qu’il contient. Pas suffisamment d’énergie et il ressemble à une selle, un peu trop, et il prend la forme d’une sphère.

courbures1

Toutes les expériences visant à déterminer la forme de l’Univers se sont soldées par un étrange constat. Même les plus précises tendent à montrer que l’Univers serait… parfaitement plat. Si ce résultat vous semble peut-être normal, pour moi ce hasard me semble plutôt difficile à avaler. L’Univers posséderait exactement la quantité de matière précise pour obtenir un espace parfaitement plat respectant la géométrie euclidienne.

Pensez à une machine choisissant au hasard un nombre compris entre –∞ et +∞ et qu’elle tombe miraculeusement sur le zéro. C’est impossible que l’Univers soit parfaitement plat et pourtant il l’est.

Je me suis questionné sur cette étrange coïncidence, car je n’y crois pas. Je devais trouver une cause, une façon d’expliquer la platitude spatiale sans faire intervenir le plus curieux des hasards.

Rétroaction

La seule autre façon logique de retrouver une géométrie spatiale euclidienne est que l’Univers possède une boucle de rétroaction qui diminuerait la masse de l’Univers si elle est plus grande que la masse critique et qui l’augmenterait si elle devient trop petite.

L’annihilation ou la création de masse (énergie) surviendrait si la forme de l’espace n’est pas exactement plate. Ainsi, un univers convexe ou concave serait une situation instable cherchant à retrouver son état de plus basse énergie qui serait un univers plat.

Pensez à une plaque métallique qu’on cherche à plier. Qu’elle courbe dans un sens ou dans l’autre, elle revient inévitablement à son état qui lui demande le moins d’énergie, sa platitude.

Autre conséquence non négligeable de ce phénomène, le principe de la conservation de l’énergie ne serait pas une loi, mais l’observation de cette rétroaction.

L’Univers peut créer de l’énergie, mais il peut également en détruire. L’équilibre s’obtient par rétroaction. Trop de destruction engendrerait une accélération de création d’énergie et vice versa.

Mon idée de rétroaction expliquerait la platitude spatiale ainsi que la loi de la conservation de l’énergie et surtout, elle repousse l’idée d’un incroyable hasard survenu au moment du big bang créant exactement la bonne quantité de matière pour engendrer un univers parfaitement plat.

Je poursuivrai cette idée dans un autre article afin d’expliquer ce qui survint juste après le moment zéro signant la création de notre Univers. J’en profiterai pour expliquer plus en détail le schéma de la boucle de rétroaction conservant la platitude de l’espace.

Temps tridimensionnel

Le temps, apparemment si simple à comprendre, est bien plus complexe qu’il n’y parait. Einstein a formalisé l’aspect bidimensionnel du temps avec sa théorie de la relativité restreinte. Le temps est relatif aux voyageurs les uns par rapport aux autres. Si les horloges battent la mesure régulièrement sans faillir, elles ne s’entendent pas sur un temps commun dès qu’il existe des différences de vitesses ou de champ gravitationnel entre elles.

Ce que nous appelons le temps, celui qu’on ressent, n’est qu’une composante du « Temps » einsteinien. Une fois de plus, il faut se rabattre sur le théorème de Pythagore pour comprendre le temps selon Einstein.

TaTrTi

Dans la figure précédente, la ligne horizontale tr représente le temps relatif entre 2 objets. La ligne verticale ti représente le temps imaginaire, la composante du temps perdu dans la différence de temps entre 2 objets qui ne se déplacent pas à la même vitesse ou qui ne partagent pas le même champ gravitationnel.

TaTrTi2

Les différentes sommes vectorielles des 2 temps tr et ti, les lignes diagonales grises ta pour le temps absolu, restent invariables en longueur, car si tr augmente, ti diminue et vice versa. C’est ce qu’on appelle l’invariance de Lorenz. Le temps (absolu) ne varie jamais en longueur, seulement en direction.

Mais si nous poussons ce concept du temps juste un peu plus loin, plutôt que de nous restreindre à voir le temps en 2 dimensions, que se passerait-il si, dans les faits, le temps était tridimensionnel? L’invariance de Lorenz, ou si vous préférez, la somme vectorielle des 3 composantes doit cependant encore rester constante, donc d’une longueur identique, peu importe sa direction spatiale. Ce principe fait en sorte que la vitesse de la lumière c reste invariable, peu importe le référentiel.

TaTrTiTj

Lorsque tj, la troisième composante de ce Temps, vaut zéro, on retrouve la loi de la relativité restreinte. Lorsque cette composante tj n’est pas nulle, tr et ti raccourcissent pour conserver la longueur invariable du temps absolu. Une horloge ne ressent pas l’effet de cette troisième dimension temporelle, tout comme elle ne ressent pas la deuxième dimension, elle continue de battre la mesure au même rythme. Toutefois, ce nouveau vecteur temporel pourrait expliquer un phénomène astrophysique appelé le « décalage vers le rouge » de galaxies.

Puisque la vitesse de la lumière reste invariable dans tous les référentiels, si la troisième composante du temps tj a une certaine longueur, quelque chose doit avoir varié et c’est la fréquence de la lumière, autrement dit, sa couleur.

Le décalage vers le rouge observé chez les galaxies distantes, d’autant plus grand que les distances entre elles et nous sont importantes, pourrait donc dépendre de deux facteurs et non pas d’un seul. Le premier facteur est celui que nous connaissons déjà, le changement de fréquence proportionnel à la vitesse d’éloignement de ces galaxies, l’effet Doppler. Cependant une partie importante des décalages observés pourrait dépendre du troisième facteur temporel.

https---blogs-images.forbes.com-startswithabang-files-2016-03-1-JTMUwFeDxeDp-yi2lqxLLw-1200x820

Si tel était le cas, nous pourrions reléguer aux oubliettes, ou à tout le moins minimiser l’effet de la constante cosmologique, autrement dit la fameuse « énergie noire » de laquelle on ne connait rien. La nouvelle interprétation de nos observations actuelles serait que l’Univers ne serait pas en expansion aussi rapide que cela peut nous paraitre, voire à la limite sans expansion du tout.

image-3

S’il n’était pas décédé, Fred Hoyle jubilerait. C’est celui qui, sous le coup de la dérision, a inventé le terme Big Bang pour se moquer de cette théorie qui fait aujourd’hui la quasi-unanimité chez les physiciens. Lui défendait sa propre théorie, celle de l’Univers quasi stationnaire et la troisième dimension temporelle pourrait bien lui donner raison.

bigbang

Il reste une question à laquelle il faut répondre. La longueur de cette fameuse troisième composante du temps serait due à quoi? Qu’est-ce qui la fait varier et qui influencerait la fréquence de la lumière?

Et si le temps lui-même créait la longueur de ce vecteur? On l’appellerait le « vecteur du temps qui passe ». Imaginons que plus le temps passe, plus ce troisième vecteur de temps s’allonge. Il serait en quelque sorte la mesure de l’âge de l’Univers.

En se débarrassant de cette douloureuse épine qu’est l’énigmatique, l’hypothétique, la dérangeante énergie noire en lui substituant le principe d’un temps tridimensionnel, nous attaquons la cosmologie sur de toutes nouvelles bases, car tout change, l’âge de l’Univers, ses dimensions et surtout son passé, son présent et son avenir.

univers-ro

J’y reviendrai, car je sens sur vous l’effet du temps, celui que vous venez de prendre pour lire et tenter de comprendre cet article. Comme toujours, ne soyez pas timorés de commenter ou de poser des questions.

Penser l’Univers autrement — 2

Dans l’article précédent, j’entame une réflexion sur une vision radicalement nouvelle de l’Univers, soit un « Univers tramé informatif plurivalent (UTIP) ». Puisque cet article se veut la suite, je vous recommande la lecture du premier volet.

Démystification des bizarreries quantiques

Mon Univers informatif tramé et plurivalent expliquerait les sauts quantiques des électrons et leurs orbitales, la non-localité et tout un tas de concepts quantiques difficilement compréhensibles et acceptables dont ceux reliés à la mesure. L’expérience des fentes de Young n’aurait plus rien d’incompréhensible ou de mystérieux.

2Interferences_Tanamura

Décohérence quantique

Ce qu’on nomme la décohérence quantique n’est en fait que la matérialisation de l’information causée par un impact, une mesure, une commande spécifique ou un algorithme traitant un lot d’informations contenues dans plusieurs mailles et qui considère qu’une particule ou un groupe de particules prendra forme à cet endroit de l’espace-temps.

quantumcomputingsakkmesterke

Intrication quantique

Ce phénomène si combattu par Einstein, mais maintes fois prouvé, connait avec ma théorie une fin heureuse pour ce cher homme, ou à tout le moins une explication qu’il aurait pu accepter.

big_artfichier_793419_7691440_201804304014163.png

Lors de l’émission de deux photons intriqués, on sait qu’on émet de l’information et non pas les photons eux-mêmes. Cette information se transporte à travers la trame à vitesse causale c (vitesse de la lumière). Lorsqu’il y a détection d’une caractéristique comme le spin d’un des deux photons, l’information sur le spin du deuxième photon intriqué est déjà rendue là où on va le matérialiser. L’intrication quantique ne viole donc aucunement la loi de la causalité.

Augmentation de la masse avec l’augmentation de la vitesse

Ce phénomène relativiste imaginé et calculé par Einstein se comprend assez bien avec l’Univers UTIP. On remarque dans notre monde que la masse d’une particule augmente avec sa vitesse jusqu’à valoir l’infini ∞ si on la pousse à atteindre la vitesse limite de causalité c.

emc

Or ce comportement s’explique en considérant qu’une information requerra un nombre plus important de mailles pour être transmise plus rapidement afin de ne pas saturer la capacité des mailles d’espace-temps et ainsi de corrompre ou de perdre cette information. L’usage de plus de mailles par unité de temps équivaut exactement à une plus grande quantité d’information fixe, donc à une plus grande masse.

La gravitation

On peut même comprendre les effets cosmologiques comme la déformation graduelle de l’espace-temps lorsque la quantité de matière (d’informations) augmente. Si on considère que les mailles gardent toujours les mêmes dimensions, il faut donc accepter que ces déformations soient de l’espace-temps supplémentaire créé pour aider à supporter le poids grandissant des informations transportées sur la trame et non pas un étirement de ces mailles comme le montrent souvent les représentations de la gravitation de la relativité générale.

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

Si la masse n’est plus qu’une information inscrite dans des paquets qui se meuvent plus ou moins rapidement sur la trame et qu’elle crée sur son passage des mailles d’espace-temps supplémentaires, il faut donc accepter que la gravitation qu’exerce une masse sur une autre représente simplement la propension de l’information à trouver le maximum de mailles d’espace-temps d’informations et à s’en rapprocher afin d’en utiliser une certaine quantité à son propre profit.

Une masse importante crée une grande quantité de mailles d’espace-temps vierges d’informations qui deviennent disponibles pour cette même masse d’information, mais également pour tout paquet d’information passant à proximité. Cela exerce sur ce paquet un attrait à se rapprocher de ces mailles supplémentaires, car chaque paquet d’information est conçu de telle façon à rechercher le chemin le plus susceptible de le transporter efficacement, donc à trouver le chemin où existent le plus de mailles.

Les trous noirs

Les trous noirs correspondent simplement à des endroits où le nombre de mailles à créer dépasse la capacité de la trame d’espace-temps. L’information transportée est alors piégée au sein d’une certaine quantité de mailles qui perdent leur capacité de générer des particules à cause de leur impossibilité de résoudre les équations à partir d’informations incomplètes au sein de chacune des mailles.

o-WORMHOLE-facebook

Un trou noir, c’est un disque dur d’ordinateur au catalogue corrompu à cause d’une quantité trop grande d’informations. Les infos inscrites dans ces mailles sont irrémédiablement piégées.

L’expansion de l’Univers

On peut expliquer l’expansion de l’Univers par son besoin de transporter de plus en plus d’informations. Ce gonflement ne se produit pas sur les rebords de l’Univers, mais partout dans l’espace, créant des mailles supplémentaires capables de relayer toujours plus d’informations.

838_000_11h35e

Cette création se produit à partir de ce qu’on nomme aujourd’hui l’énergie sombre ou noire, une énergie potentielle capable de générer des mailles d’espace-temps à un rythme défini par la quantité d’information à transmettre afin d’éviter la saturation des mailles, le piégeage des infos et ainsi la production de trous noirs intempestifs.

Conclusion

Voilà en résumé comment un monde basé sur un transport d’informations sur des particules plutôt que sur le transport des particules elles-mêmes permettrait de comprendre et de lier la physique quantique et la physique cosmologique en une seule vision cohérente de notre Univers.

hqdefault

Il reste tellement à écrire sur ce type d’Univers et de choses à expliquer, mais je suis sincèrement convaincu que cette vision permet de réconcilier une fois pour toutes les deux pans apparemment incompatibles de notre physique moderne.

Je poursuivrai mes réflexions sur mon «Univers tramé informatif plurivalent» (UTIP) dans d’autres articles qui seront répartis parmi beaucoup d’autres sujets de préoccupations. Restez à l’affût en vous abonnant.

Penser l’Univers autrement — 1

Je consacre deux articles se voulant un essai sur ce que je nomme un «Univers tramé informatif plurivalent (UTIP)». Ne paniquez pas, ce terme s’explique assez facilement en commençant par le début et en gravissant une marche à la fois. Un lien peut être fait entre cet article et l’Univers simulé que je décrit dans un article à lire ici

L’intemporalité du photon abordé dans un précédent article semble nous ouvrir une porte vers une vision radicalement différente de notre Univers. Je vous recommande de le lire si ce n’est déjà fait. Dans le présent article, j’utilise préférentiellement le photon comme exemple, mais le concept s’applique à n’importe quelle particule élémentaire massive ou non.

Création d’un photon

L’intemporalité photonique expliquerait sa non-localité, mais aussi la non-localité de toutes les particules massives ou non. Si un grain de lumière peut se retrouver n’importe où en un temps (personnel) nul, se pourrait-il qu’il soit déjà (potentiellement) partout?

researchers-discover-angle-particle-which-is-both-matter-and-antimatter-at-the-same-time

Alors, plutôt que de considérer le photon comme une particule ou une onde qui voyage dans l’espace-temps, regardons l’Univers comme un champ de potentiel énergétique emplissant déjà tout l’espace possible. En d’autres termes, l’espace possède déjà la capacité de créer un photon n’importe où, il suffit de lui dire où et quand le faire. L’espace contient la recette, les ingrédients et les ustensiles pour créer des photons, peu importent l’endroit et le temps (espace-temps). Il en va de même avec toutes les particules contenues dans le bestiaire de la physique.

Le processus fondamental

Une fois émis par une quelconque étoile sise aux confins du cosmos, le photon, ou en fait des informations le concernant se mettent à voyager dans la trame d’espace-temps. En soi, le photon ne voyage absolument pas et n’a pas à le faire. Ce sont ses papiers d’identité qui le font à sa place.

hqdefault

Il est impossible pour nous de le détecter tant que ses papiers d’identité ne nous parviennent pas via la trame de l’espace-temps et ceux-ci prennent un certain temps pour nous parvenir. Cette vitesse de transmission des informations concernant le photon émis par l’étoile peut se nommer la vitesse de la lumière, la vitesse limite, la vitesse de causalité ou la vitesse de transmission des informations le long de la trame informative, choisissez le terme qui vous convient le mieux, tous s’équivalent.

L’information

Je reviens donc à mon article sur l’information, que tout est information. Ici, je pousse le concept encore plus loin en considérant que les voyageurs dans l’espace ne sont pas les particules elles-mêmes, mais seulement l’information sur ces particules qui se meuvent à différentes vitesses selon le «poids» des informations à transmettre, correspondant en fait à leur masse.

quantum

Avec nos ordinateurs, on comprend très bien le concept de «poids» de nos documents et la vitesse avec laquelle nous pouvons les relayer d’un stockage à un autre. La masse des particules pourrait se comparer à un document informatique plus ou moins lourd, donc plus ou moins rapide à transférer.

Dualité onde – particule

Cette notion perd un peu de réalité sans toutefois s’inscrire en faux. En considérant que tout n’est qu’informations, cette dualité n’est que la représentation d’un lot d’informations avant et après leur matérialisation.

La masse

Si l’Univers n’est qu’informations, ce que nous nommons la masse des particules est ni plus ni moins que le bagage informatif maximal transportable par cette masse d’informations regroupées dans un seul et même «paquet». À chaque paquet de différentes valeurs correspond ce que nous nommons une particule de différente masse. La masse nulle du photon explique sa vitesse supérieure et maximale. Car au-delà de l’information contenue dans de la masse, il existe également d’autres informations de base portées par un photon, ne serait-ce que sa quantité de mouvement, son spin et son identité. Ainsi, transmettre quelques informations sur une trame conçue à cet effet, une trame d’espace-temps comme celle décrite dans la théorie de la gravitation quantique à boucles, exige une consommation de ressources temporelles, raison de la vitesse maximale, mais non infinie de la lumière malgré sa masse nulle.

Des mailles d’espace tridimensionnelles

La trame de l’espace est composée de mailles volumiques valant chacune un «volume de Planck». Ce volume indivisible et minimaliste serait capable de transmettre l’information d’un photon à ses mailles adjacentes à une vitesse phénoménale, je vous le donne en mille, le temps de Planck.

1*sZYO387ykUBhz5iAJjcepw.gif

Les mailles tridimensionnelles de l’espace sont si incroyablement fines qu’il nous est bien difficile d’en imaginer la quantité comprise dans un simple dé à jouer. 1098 mailles par cm3. C’est bien plus que le nombre total d’atomes dans tout l’Univers estimé à 1080.

Temps, vitesse de transmission et retard

Quant au temps de Planck, c’est le plus petit atome de temps. Il équivaut à 5 x 10-44 seconde. En fait, ce temps est déduit de la vitesse de la lumière lors du passage de l’information d’un photon d’une maille spatiotemporelle à l’autre.

L’information d’un photon qui se transporte d’une maille à l’autre s’effectue à la vitesse limite, elle n’accumule donc aucun retard de transmission. C’est pourquoi un photon semble intemporel. Son temps propre équivaut au retard accumulé de maille en maille. Puisqu’il n’y a aucun retard, il ne possède aucun temps propre, il est donc intemporel.

L’information d’une particule possédant une masse accumule des retards de transmission de maille en maille, l’empêchant d’atteindre la vitesse maximale.

Création des particules

Voilà le cœur du sujet et de mon idée d’une trame spatiotemporelle plurivalente. Chaque maille de l’espace-temps possède la capacité de faire apparaitre n’importe laquelle des particules à partir de l’énergie intrinsèque de chacune des mailles qui s’avère être l’énergie du vide. Il lui suffit de recevoir l’information sur sa nature et ses caractéristiques transmises sur la trame ainsi que la commande de la rendre réelle, de la créer. Cette commande provient de ce qu’on nomme la détection, la mesure, l’interaction entre elle et une autre particule déjà passée de l’état virtuel à l’état matériel.

structurs ne quarcks image-75

J’utilise le terme d’Univers plurivalent pour désigner sa capacité intrinsèque à créer n’importe quelle particule élémentaire à n’importe quel endroit de sa trame.

De cette façon, les particules ne se déplacent jamais dans l’espace-temps, même si on croit voir qu’elles le font. Ce sont ses caractéristiques qui sont transmises de maille en maille et celles-ci obtiennent ou non la commande de la générer. Sans cette commande, la particule reste à l’état virtuel d’information non traitée. Alors on la considère comme virtuelle ou délocalisée. En la détectant, la trame d’espace-temps résout les équations en utilisant les paramètres contenus dans le paquet d’information transmis et génère la particule correspondante.

Le prochain article continuera de relier ma théorie UTIP aux phénomènes physiques connus, tant ceux liés à la physique quantique que ceux traitant de relativité générale.

La gravitation

J’aimerais vous partager un peu de mon enghousisame pour la gravitation, car ce phénomène, cette force, cet effet, ce sujet d’étude est plus que fascinant.

socrate-gorgias

En Grèce antique, elle n’était pas universelle puisque les observations montraient que la fumée montait. Ainsi, tout ne tombait pas sur Terre. Ils voyaient également que la Lune ne tombait pas. Les objets possédaient donc un lieu naturel auquel ils se raccrochaient, soit la Terre, soit le ciel.

nyf30hn5iXlt45k6fhP-o

Par la suite, Galilée montre que la chute des corps est universelle et pourtant l’expérience avec des corps légers et lourds ne pouvait pas le démontrer à cause de la résistance de l’air plus perturbante pour les objets très légers. Dans le vide, tous les corps tombent effectivement de façon identique, mais pas sur Terre. Et pourtant, il ose le prétendre grâce à des exercices de pensée, mais certainement pas grâce à une expérience qui aurait prouvé qu’une plume tombe à la même vitesse qu’une pierre ! Sa démonstration à la tour de Pise est du folklore.

Newton fait faire un bond de géant à la gravitation avec sa loi montrant que c’est une force qu’exercent les objets massifs entre eux. Il en déduit une formule montrant que cette force est proportionnelle à la multiplication des masses et diminue en fonction du carré de la distance séparant les deux objets.

be105d73-c473-4250-8569-9b49213418ad

Mais le plus impressionnant est qu’il établit un parallèle entre la chute des corps sur Terre et les orbites célestes en affirmant que la Lune tombe bien sur la Terre, mais sa rotation autour de notre planète fait qu’elle ne cesse de nous rater. Il découvre l’existence d’une constante gravitationnelle (G) identique pour tous les corps s’attirant dans l’Univers. La force gravitationnelle s’exerce sans aucune limite de distance et elle est instantanée. Il sait que cette force dépend des masses des objets, mais il ignore ce qui fait que la masse attire la masse.

Einstein saute ensuite sur l’occasion de déclasser la théorie de Newton en sachant que la force gravitationnelle ne peut pas s’exercer instantanément puisque rien ne peut dépasser la vitesse limite correspondant à la vitesse de la lumière dans le vide. Il a compris que la théorie de Newton n’est qu’une approximation d’une théorie plus générale. Il cesse de voir la gravitation comme une force. Il établit une équivalence entre la masse inertielle et la masse pesante. Il considère que la masse déforme l’espace-temps et c’est cette déformation d’autant plus importante que la masse est grande et dense qui fait courber les trajectoires des objets, leur imposant de tourner le long d’une courbe elliptique pour les planètes gravitant autour des étoiles et des lunes autour de leurs planètes.

albert-einstein-9285408-1-402

La théorie du grand homme parvient même à prévoir que le temps est modifié par le champ de gravité. Aujourd’hui, il suffit de surélever une horloge atomique de 20 cm pour commencer à apercevoir un décalage entre celle-ci et une autre restée bien en place. Il reste cependant encore une grande inconnue dans cette théorie, pourquoi la masse plie-t-elle l’espace ? Et si la gravitation n’est pas une force, comment la masse parvient-elle à déformer l’espace autour d’elle sinon en lui appliquant une force qui l’étire ?

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

Mais le plus gros problème avec la théorie de la gravitation d’Einstein qu’on appelle la relativité générale se situe dans les extrêmes. Elle prédit correctement la formation des trous noirs, mais elle établit une densité centrale valant l’infini, ce qui cesse d’être de la physique. Même chose pour le Big Bang, la relativité générale considère qu’au temps zéro, l’Univers était infiniment dense, infiniment chaud et infiniment petit. Une théorie qui prédit des infinis n’est plus une théorie et là encore, on peut considérer qu’il existe une meilleure théorie que la relativité générale.

agujero_negro 3

Afin de se dépêtrer de ces dérangeants infinis, les physiciens inventent d’autres théories dont l’une semble prometteuse, la gravitation quantique à boucles. Cette théorie cesse de voir l’espace-temps comme étant continu, il devient discret, comme des atomes tous identiques d’espace-temps. On obtient alors des aires et des volumes minimaux et discrets, une sorte de maillage tridimensionnel où tous les petits volumes incompressibles sont reliés entre eux par un réseau de spins. Le plus grand spécialiste de cette théorie est l’Italien Carlo Rovelli. L’Américain Lee Smolin de l’Institut Perimeter au Canada a également apporté une importante contribution. Plus récemment on entend beaucoup parler du Français Aurélien Barrau, une étoile montante de cette théorie et un excellent vulgarisateur. Je le félicite également pour ses sorties remarquées en faveur de l’environnement.

Mais la gravitation n’a pas terminé de nous surprendre et de nous étonner. Récemment, la mise en lumière du boson de Higgs et du champ de Higgs nous éclaire un peu plus sur le mécanisme engendrant la masse. Cependant, des questions fondamentales demeurent, dont à savoir pourquoi les particules ont toutes des masses différentes et pourquoi elles ont les masses qu’on leur connait ?

Mais il y a pire. On ignore si la gravitation existe aux petites échelles. Et quand je parle des petites échelles, je ne fais pas seulement allusion au niveau des particules élémentaires, mais à tout ce qui se situe en deçà du dixième de millimètre à cause d’autres forces s’exerçant à ces échelles et qui masquent très efficacement les éventuels effets de la gravitation. Pour savoir si deux protons s’attirent par la force gravitationnelle, il faudrait pouvoir la discerner à travers la force électromagnétique qui les repousse avec un facteur 1030 fois plus important.

En résumé, on sait calculer plein de choses en rapport avec la gravitation, mais on ignore encore totalement ce qui la constitue et même si elle existe réellement. Si la gravitation reste l’effet le plus évident à l’échelle humaine, elle demeure la plus mystérieuse de toutes les interactions.

Antigravitation — 3 : La solution

Dans les précédents articles, j’ai expliqué ce qu’était véritablement l’antigravitation et ensuite j’ai testé l’hypothèse de l’usage d’antimatière pour en créer.

Cet article vous explique comment concevoir un vaisseau spatial mu par des forces antigravitationnelles à partir d’un concept abordé à la fin du deuxième article, la relativité.

Jouer sur la relativité du temps

Prenons comme référence temporelle celle d’une personne observant un objet volant fixe au-dessus de sa tête qui se maintient dans les airs. La vitesse relative entre l’individu et le vaisseau étant nulle, le temps s’écoule de façon identique, le vaisseau n’accumule aucune différence de temps.

Créer cette relativité temporelle

Maintenant, faisons osciller très rapidement le vaisseau grâce à une forte tension électrique appliquée à la carcasse qui l’amène à entrer en résonance à très haute fréquence. Ce mouvement alternatif est transmis à tout ce qui se trouve à bord, passagers compris. L’engin crée une relativité temporelle non nulle par rapport à l’observateur au sol ainsi que par rapport à l’espace environnant le vaisseau puisqu’il existe maintenant une vitesse relative non nulle entre l’intérieur et l’extérieur du vaisseau.

Créer l’antigravité

Si on regarde la forme de la trame spatiotemporelle qu’engendre cette oscillation continue, l’espace-temps extérieur n’est pas affecté, mais il en va tout autrement pour la trame d’espace-temps du vaisseau et de ses occupants. Ces oscillations créent des divergences dans la trame d’espace-temps en étirant le temps à l’intérieur du vaisseau (facteur de Lorenz). Mais si le temps s’étire, la trame d’espace-temps est donc déformée. Une bosse se crée dans la trame d’espace-temps là où le vaisseau se trouve. Une force antigravitationnelle voit le jour et celle-ci repousse les éléments externes au vaisseau dont la Terre. Si cette force repousse la Terre autant que la Terre l’attire, l’objet reste en position immobile au-dessus du sol.

Commandes de vol

Pour s’élever davantage, il suffit de faire osciller le vaisseau à plus forte fréquence ou à plus forte amplitude ou les deux à la fois. Pour descendre, on fait l’inverse. Pour les déplacements latéraux, on applique des tensions électriques différentes à des endroits précis de la carlingue pour engendrer une bosse spatiotemporelle asymétrique le repoussant dans la direction désirée.

Ainsi, non seulement le vaisseau parvient à compenser la gravitation par la création d’une force réellement antigravitationnelle, mais de plus il devient parfaitement manœuvrable.

caracas-venezuela-ovni-spherique-parque-8-janvier-2014.png

Un vaisseau luisant

Si les vitesses d’oscillation de l’engin se rapprochent des fréquences de la lumière visible, on verrait le vaisseau luire d’une lumière variant de couleur en fonction des manœuvres appliquées au vaisseau. Ça ne vous rappelle pas plusieurs rapports d’observations d’ovnis ?

Défier (presque) toutes les lois de la physique

Si on fait fortement varier la vitesse d’oscillation, le vaisseau sera projeté a vitesse folle par rapport à son environnement. Pourtant, dans le vaisseau même, les passagers ne ressentiraient rien puisqu’ils restent parfaitement fixes par rapport à la carcasse du vaisseau, subissant la même relativité temporelle. Aucun facteur G démentiel à encaisser.

De cette façon, le vaisseau et ses passagers ne subissent aucun effet d’accélération, de décélération, d’inertie, de friction ou de mur du son. Le vaisseau se comporterait exactement comme des milliers sinon des millions de témoins l’ont rapporté. Il semblerait faire fi de toutes les lois de la physique. Il pourrait changer instantanément de direction et de vitesse sans affecter la santé des entités biologiques à son bord. Il s’élèverait à des accélérations folles sans effort apparent. Il disparaitrait en un clin d’œil en atteignant des vitesses démentielles par rapport au sol.

Une application adéquate d’une loi physique trop négligée

Et pourtant, c’est bien grâce à la physique, à la physique relativiste, qu’un objet lourd parviendrait à voler sans faire entrer la sustentation aérienne en ligne de compte. Même en absence total d’air, l’objet volerait tout aussi bien. Ainsi, qu’il soit dans notre atmosphère ou au cœur de l’espace, quasiment aucune différence.

Les comportements en vol d’un tel type d’engin s’apparenteraient à tout ce qui est décrit sur le sujet, mais également à tout ce qui est décrié par toute la communauté scientifique.

ovni_02-1349c85

Nul besoin de faire entrer en ligne de compte des extraterrestres pour justifier la présence de ces ovnis antigravitationnels. Il suffuit simplement qu’une branche de l’humanité ait réussi à évoluer un peu plus rapidement que la nôtre.

Il reste toute la question des calculs, je sais. Mais une chose est certaine, la piste temporelle semble bien plus prometteuse que la piste matérielle pour faire fléchir à sa guise la trame spatiotemporelle afin d’engendrer de l’antigravitation malléable.

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Photon noir

Le CERN reprend ses activités, mais pas avec le LHC, avec le SPS. Bon, d’accord, je vais continuer en français. Le Centre européen pour la recherche nucléaire recommence ses expériences en utilisant le Super Synchrotron à Protons, un accélérateur circulaire plus petit que le fameux Large Hadron Collider utilisé dans la traque du boson de Higgs.

Cette fois-ci, les scientifiques du CERN cherchent des traces du photon noir, une particule hypothétique qui serait responsable d’interactions entre la matière ordinaire et la matière noire. Cette expérience est nommée par le sigle NA64.

Messier-81.jpg

D’après la théorie actuelle, l’Univers serait composé de 15 % de matière telle qu’on la connait et de 85 % de matière dite noire puisqu’elle est invisible, n’interagissant pas avec les photons. Cette fameuse matière noire permet de consolider les galaxies qui, sinon, se disloqueraient tellement leur vitesse de rotation est grande. Mais grâce à ce surplus de masse, elles forment leurs belles spirales sans que leurs étoiles s’éparpillent.

Seules des observations gravitationnelles de ce genre, ainsi que les effets de lentilles gravitationnelles nous laissent croire que la matière noire existe réellement. Toutefois, elle n’est jamais apparue dans les expériences au CERN ou ailleurs. On pense être en mesure de confirmer son existence en s’attaquant à son transmetteur de force qui serait un type de photon différent des grains de lumière que l’on connait, qui n’émet aucune lumière (onde électromagnétique) et qui par conséquent est invisible, de là son qualificatif «noir».

overview-na64.jpg

Tout ceci n’est qu’hypothétique, mais si on ne parvient pas à découvrir ce photon noir et d’y associer une cinquième force, la théorie de l’existence de la matière noire va prendre du plomb dans l’aile. S’ensuivrait une remise en question de la théorie de la gravitation énoncée par Einstein en 1915, sa fameuse relativité générale.

Puisque cette théorie n’a jamais été prise en défaut, dans aucune expérience, soit elle est juste et la matière noire existe réellement, soit la matière noire n’existe pas et la relativité générale est fausse malgré nos résultats expérimentaux actuels qui atteignent des niveaux de précision extrêmes.

rcs2_03727-132623-hst-1280x865.jpg

Le questionnement est majeur puisqu’il touche à 85 % du contenu de l’Univers en fait de matière ou à l’avènement d’une théorie de la gravitation interagissant différemment aux petites et aux distances moyennes et grandes, c’est-à-dire de la dimension des galaxies et plus encore.

On a toutes les preuves que nos théories coincent quelque part, pourtant l’Univers a très bien su dissimuler la façon dont il fonctionne. Présumer l’existence du photon noir et de sa matière noire est une tentative théorique qui nous permettrait de nous dépêtrer de ce bourbier dans lequel la physique des particules et de la gravitation est enfoncée depuis plus de 85 ans.

Fritz-Zwicky-at-the-International-Astronomical-Union-meeting-in-Brighton-England-in.png

Oui, déjà en 1933, un astronome du nom de Fritz Zwicky avait présumé de l’existence d’une matière invisible en mesurant la vitesse de rotation des galaxies. Ce dernier s’est mis la communauté des astronomes à dos lorsqu’il les a tous traités de «bâtards, peu importe dans quel sens on les regarde», mais il avait raison puisqu’ils s’étaient alors totalement désintéressés de ses résultats d’observation qui jetaient un très lourd pavé dans leur mare à canards.

Mais eux qui voyaient Zwicky comme leur vilain petit canard ont dû admettre, bien plus tard, malheureusement, qu’il avait parfaitement raison. Un scientifique de plus à rejoindre le plateau de la balance des génies désavoués qui ont osé dire différemment de la majorité, voire de la totalité des gens de leur profession.

Une relativité incomprise

Bon, je veux régler un cas une bonne fois pour toutes. Malheureusement, les fourvoiements ont la vie longue. Certains scientifiques ne comprennent pas la physique relativiste et ils disent de grosses conneries lorsqu’ils sont interviewés.

Je vais donner un exemple qu’ils utilisent souvent. Notre Galaxie, la Voie lactée a un diamètre de près de 100000 années-lumière. Ça signifie que si une source lumineuse est à sa périphérie et qu’on l’observe à partir du point antipodal, les signaux lumineux captés auront été émis voilà 100000 ans. Ça, c’est vrai.

Où ça se gâte, c’est lorsque les personnes interviewées placent des astronautes dans un vaisseau spatial pour leur faire traverser la Galaxie de part en part à une vitesse proche de la lumière. Ils disent alors que ça leur prendra 100000 ans pour faire ce trajet. Ainsi, ils auraient besoin d’un amas de générations de voyageurs avant d’arriver à destination. Mais ce qu’ils disent est totalement faux, et pas qu’un peu.

Albert_Einstein_1947

Lorsqu’on file à des vitesses proches ou égales à la vitesse de la lumière, ce ne sont plus les lois de la physique classique qui s’appliquent, mais celles de la relativité restreinte mises en évidence par Einstein. En fait, la relativité restreinte s’applique toujours et à tout déplacement, mais puisqu’elle est plus compliquée à calculer que les lois de Galilée, on utilise ces dernières lorsqu’on se meut à la vitesse d’un bœuf.

Que dit alors la relativité restreinte à propos d’un voyageur qui filerait à la vitesse de la lumière (en postulant que c’est possible)? Eh bien! celui-ci traverserait notre Galaxie d’un diamètre mesurant 100000 années-lumière en exactement… zéro seconde. Ne me frappez pas, c’est la faute à la relativité restreinte, pas à moi. Un voyage effectué à la vitesse de la lumière (dans le vide) est instantané, peu importe la distance parcourue. Le voyageur ne vieillit pas d’une seule fraction de seconde.

En revanche, si un deuxième individu attend le voyageur faisant un trajet aller-retour, cet observateur devra effectivement patienter 200000 ans avant de voir réapparaitre le voyageur. C’est ça la « relativité » du temps telle qu’Einstein l’a décrite. Pour le voyageur luminique, son trajet aller-retour d’un rebord à l’autre de la Galaxie n’aurait même pas duré une seconde tandis que pour la personne restée sur ce rebord de la Voie lactée, elle l’aura attendu le temps prévisible, soit 200000 ans.

voie-lactee-concept.jpg

Ainsi, tous les scientifiques qui ne respectent pas cette relativité lorsqu’ils considèrent des déplacements dits « relativistes » se gourent et induisent les téléspectateurs en erreur. Un voyageur n’a pas besoin de 100000 ans pour effectuer un voyage de 100000 années-lumière ou 200000 années-lumière, ou n’importe quelle distance s’il se déplace à la vitesse de la lumière. Il fera tous les trajets en exactement 0 seconde.

La théorie de la relativité restreinte découverte par Einstein n’est pas de la science-fiction. Elle est bien réelle, exacte et incontestable puisque prouvée de multiples façons. Je ne vous demande pas de me croire sur parole. Beaucoup des contemporains du génial physicien ont également rejeté sa théorie, la croyant totalement aberrante. Ils avaient tort, tout comme les gens interviewés qui continuent d’appliquer la mécanique de Galilée plutôt que celle d’Einstein même si les vitesses en cause sont de l’ordre de la vitesse de la lumière dans le vide.

Mais il doit bien y avoir une erreur quelque part ! Pas exactement une erreur. On parle ici d’un cas limite. Un voyageur est constitué d’atomes et ces derniers possèdent une masse. Or, pour inculquer à une masse une vitesse égale à celle de la lumière, ça prend une énergie infinie. Un voyageur ne pourra donc jamais atteindre cette vitesse limite, mais il peut s’en rapprocher.

Ainsi, son voyage d’une extrémité à l’autre de notre Galaxie ne durera pas zéro seconde, mais il ne sera pas non plus de 100 000 ans.

FormuleRelativité.png

Pour les afficionados des formules, voilà à quoi le temps relatif du voyageur (t’) ressemblera selon le temps sans tenir compte du principe de la relativité (t) et selon sa vitesse (v) par rapport à la vitesse de la lumière (c).

Si la vitesse du voyageur (v) est égale à celle de la lumière (c), alors on obtient la racine carrée de zéro multiplié par t, ce qui donne effectivement zéro seconde.

On voit ainsi que plus le voyageur se rapproche de la vitesse de la lumière, plus le temps s’étire, même si lui continue de vieillir au même rythme.

Photo de A. Einstein : Oren Jack Turner, Princeton, N.J.
Voie lactée : Astrosurf.com

 

La théorie décrivant le mieux ma fille

Après une dizaine d’années d’un travail acharné et ininterrompu, un homme aux pensées non conformistes accouche d’une théorie révolutionnaire. Cent-deux ans plus tard, celle-ci reste toujours d’actualité et n’a même jamais été prise en défaut.

La théorie de la relativité générale est un monument érigé par un seul homme, un effort de pensée hors normes. Mais la théorie d’Einstein censée résumer la façon dont le cosmos fonctionne a supplanté son auteur.

En 1920, Schwartzschild calcule une solution à ses équations qui démontre que les étoiles ont un rayon critique en dessous duquel elles se transforment en trou noir. Einstein en est horrifié et espère que la Nature possède un système de censure lui évitant de générer ces monstres. Il a tort. Puis, on lui prouve que ses équations forcent l’Univers à s’étendre ou à se contracter. Une fois encore, horripilé par ce constat, il modifie ses équations pour les amener à décrire un Univers stationnaire, conforme à sa vision. Malheureusement, l’histoire se répète, de nouveau il se trompe. L’Univers ainsi que ses propres équations refusent obstinément de se comporter comme il le veut. C’est ironique de voir que son monde ne lui a jamais appartenu, ou si peu de temps. Son bébé s’est prestement échappé de son berceau et malgré tous ses efforts pour le ramener à la maison, sa création lui a prouvé qu’on ne possède rien, même pas ses propres idées.

Morale de cette histoire vraie, ne jamais sous-estimer le pouvoir d’une idée. Une fois lancée dans l’univers, elle possède sa vie propre et ses propres amours. Alors, pensez-y avant de diffuser vos réflexions. Elles pourraient vous surprendre et il sera ensuite trop tard pour fuir votre paternité. Il vous restera à prendre un verre de vin en vous disant que vous avez fait votre gros possible, mais que force est de constater qu’elles n’en font qu’à leur tête.

Finalement, la théorie de la relativité générale et ma fille, c’est du pareil au même.

Photo: Ciel & Espace

Du zéro, de la température et des chemins glacés… des prédictions

Zéro est un chiffre et un nombre. Une valeur nulle, mais zéro, ce n’est pas rien. Zéro est important, surtout lorsqu’il est situé dans un nombre composé de chiffres dont leur position relative leur confère une valeur différent du chiffre en soi. L’habitude d’écrire des nombres en base 10 est tellement ancrée qu’on en finit par oublier que dans le nombre 2847, le 4 vaut 40 et le 2 vaut 2 000, car les zéros ne valent pas rien.

Remarquez, le zéro n’apparait pas dans la suite des chiffres romains ? Même si leur base de calcul est également 10, le zéro est tout de même inexistant, et pour cause. À cette époque, les nombres servaient seulement… à compter. Ils comptaient des jours, des soldats, des sesterces, des acres, bref des choses comptabilisables. Lorsqu’ils n’avaient rien à compter, ils ne comptaient pas. Ainsi, puisque le zéro n’avait aucune utilité pratique, les Romains n’ont pas vu l’intérêt de donner une réalité à ce chiffre plutôt particulier.

La valeur zéro revêt une signification bien étonnante lorsqu’on l’utilise pour évaluer une température. Longtemps l’humain s’est demandé ce qu’était vraiment la température. Sachant même la mesurer, il ignorait toutefois ce qu’il mesurait exactement. Puis la température s’est progressivement laissé saisir. Aujourd’hui, on sait exactement ce qu’on mesure lorsqu’on plonge un thermomètre dans un milieu quelconque. On mesure l’agitation des atomes ou des molécules de ce milieu. Plus ils sont mobiles, plus la température est élevée. En revanche, plus ils sont figés, plus on se rapproche du zéro de température. Pas le zéro degré Celsius, mais le zéro kelvin, également appelé le zéro absolu. À zéro kelvin, les briques élémentaires de notre monde ont cessé de s’agiter. Cette température valant -273,15 °C, le zéro kelvin est une limite improbable à atteindre à cause des lois quantiques. Aujourd’hui, le record de froid atteint lors d’expérimentations scientifiques très sophistiquées est 450 pK (picokelvin) ou 0,000 000 000 450 kelvin.

L’unité de température kelvin a été donnée en l’honneur de William Thomson, Lord Kelvin qui en élabora le principe. Pour ceux dont ce physicien reste méconnu, il était l’une des plus importantes figures scientifiques de la fin du XIXe siècle, principalement en thermodynamique. Lors d’un exposé à la Royal Institution de Londres en 1900, il déclara qu’à part deux petits nuages, la physique arrivait au bout de son parcours. Ces deux nuages devinrent quelques années plus tard la physique relativiste et la physique quantique, les deux pans fondamentaux de la physique actuelle. Comme quoi, on a beau avoir inventé le zéro absolu, il est fort possible d’obtenir une note de zéro lorsqu’on s’attaque à faire des prédictions, même dans son propre champ d’expertise, y compris pour le plus grand spécialiste de son domaine.

Nous devons à tout prix garder une attitude suspicieuse lorsqu’une sommité veut nous éblouir avec des prédictions basées sur des faits et des calculs indéniables. Malgré que ces huiles puissent être admirables, ils deviennent faillibles comme nous tous lorsque, imbus, les impudents s’aventurent imprudemment sur les chemins glacés des prédictions.

Lire la suite « Du zéro, de la température et des chemins glacés… des prédictions »