Ceinture d’Orion

La constellation d’Orion forme un quadrangle bien connu des habitants de l’hémisphère nord. Elle est facilement repérable grâce à ses étoiles plus brillantes que la moyenne. Parmi celles-ci, Betelgeuse et Rigel se démarquent, la première pour être une digne représentante des supergéantes rouges en fin de vie et la seconde comme étant l’archétype de la supergéante bleue qui finira en supernova et fort probablement en trou noir. Dans l’Égypte ancienne, ce dessin d’étoiles représentait le dieu Osiris, la plus importante figure du panthéon égyptien.

osiris-prince-noir-688po

Cependant, je veux m’attarder aux trois étoiles centrales de ce polygone formant ce qu’on appelle la ceinture de ce chasseur céleste. Presque parfaitement alignées, ces trois supergéantes bleues se nomment Alnitak, Alnilam et Mintaka. Cet alignement n’est qu’illusion, car en regardant en trois dimensions, elles sont toutes situées dans des plans différents. Elles se situent donc à des distances différentes de nous.

Capture d’écran, le 2018-12-18 à 19.14.20.png

On associe souvent ces trois étoiles à des constructions mégalithiques formant au sol un une forme géométrique semblable. Les trois principales pyramides du plateau de Gizeh ainsi que celles de Teotihuacan semblent vouloir imiter ce quasi-alignement. Plusieurs se sont rués sans vergogne sur la hasardeuse hypothèse que cette fameuse ceinture serait le lieu d’origine des extraterrestres qui auraient participé à la construction de ces beautés de pierres. C’est peu probable, pour différentes raisons dont celle passablement importante que les étoiles les plus brillantes sont celles qui risquent le moins d’abriter la vie.

28641191

De fait, ce ne sont que de gros bébés joufflus de seulement quelques millions d’années d’existence issus d’une même pouponnière d’étoiles, la grande nébuleuse d’Orion. La vie intelligente et technologique ne peut pas se développer si rapidement. D’autre part, les cataclysmiques bouffées de particules éjectées de ces monstres stellaires tuent certainement toute vie qui pourrait se trouver dans un rayon passablement grand autour d’elles.

Capture-3-pyramides

Alnitak se trouve à 843 années-lumière de la Terre. Elle n’est pas constituée d’une seule, mais bien de trois étoiles, dont deux tournent rapidement l’une autour de l’autre. La plus brillante possède 33 fois la masse de notre Soleil et finira certainement en trou noir dans un avenir céleste pas si lointain.

Alnilam se situe loin derrière les deux autres, mais elle semble ne posséder aucun compagnon. En revanche, elle pourrait bien abriter un grand nombre de planètes et de lunes. Son imposante masse de 136 fois celle de notre Soleil chauffe toutefois les surfaces planétaires et lunaires à des températures infernales.

La troisième étoile de la ceinture, Mintaka, s’auréole de mystères. On pense qu’elle est constituée d’au moins quatre étoiles bleues ou supergéantes bleues dont la plus massive ferait 22,5 fois la masse du Soleil. Une cinquième étoile moins massive et moins chaude ferait partie de ce système.ufovni2012-sirius-orion

Sans pouvoir l’affirmer, il est très peu probable que la vie soit apparue et ait prospéré dans cette région précise du ciel. Attribuer les dispositions des pyramides à l’origine des extraterrestres qui seraient responsables de leur construction me semble une spéculation aux probabilités frôlant la nullité.

Oui, ces étoiles nous apparaissent exceptionnelles vu de la Terre, mais pour évoluer la vie n’en demande pas tant. Bien au contraire, elle préfère la quiétude, les étoiles beaucoup plus petites et relativement froides, les banlieues retirées, et surtout du temps, énormément de temps. Ces conditions particulières ne se retrouvent pas dans la ceinture d’Orion.

orion_map_z.jpg

En prenant pour acquis, ce qui est loin d’être prouvé, que les pyramides imitent le schéma des étoiles de la ceinture d’Orion, il faut chercher la raison véritable ailleurs que dans le lieu d’origine des extraterrestres bâtisseurs.

Que les anciens peuples aient simplement associé les étoiles de cette constellation à un de leurs dieux est, à mon avis, bien suffisant. Chez les Égyptiens, le culte d’Osiris est si ancien qu’il pourrait remonter à la première dynastie pharaonique. Qu’on ait voulu lui donner une des meilleures places dans le ciel me semble très logique sans devoir chercher d’autres raisons.

Que les grands bâtisseurs aient ensuite imité sur Terre la position des étoiles de cette constellation est de faire honneur à leur dieu le plus important. Toutes nos églises, cathédrales, oratoires, basiliques, etc. témoignent du même engouement religieux.

 

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Ingéniosité et tête de mule

L’humain est une bête étrange, souvent pour le pire, parfois pour le mieux. Cette vidéo de 5 minutes explique comment des chercheurs sont parvenus à détecter les premières étoiles qui se sont allumées dans notre Univers grâce à un détecteur de la grandeur d’une table de cuisine.

Leur projet allait à l’encontre de l’ensemble de la communauté astronomique qui refusait d’y croire, préférant attendre les télescopes géants censés être opérationnels en 2020 et au-delà, des appareils valant une fortune contre une poignée de petite monnaie pour l’expérience présentée ici.

La courte vidéo est en anglais, mais les images parlent d’elles-mêmes.

Reportage sur le sujet à Radio-Canada.ca