Savoirs anciens, la distance Terre-Soleil

Mon récent article intitulé «La pyramide» m’a fait penser que je n’avais jamais publié le dernier de la série sur les savoirs anciens. Le voici donc avec beaucoup de retard, mais comme on dit «Vieux motard que j’aimais».

Ça parait idiot de penser que les anciens peuples, qu’ils soient Mésopotamien, Égyptien, Sumérien, Maya ou toute autre culture ayant vécue à ce qu’on croit être le début des civilisations puissent connaitre des informations complexes de nature astronomique sans qu’elles n’aient été transmises par des entités plus savantes.

Pourtant, munis uniquement d’instruments de mesure de fortune, du sens de l’observation, de méthodologie, de mathématiques simples et de déductions logiques utilisant les connaissances déjà acquises, il fut parfaitement possible à ces peuples de connaitre une information aussi impressionnante que la distance Terre-Soleil.

Je vous invite à lire ou à relire mes différents articles sur les «savoirs anciens» puisqu’ils constituent un échafaudage sur lequel chaque connaissance acquise est judicieusement utilisée pour déduire la suivante, en commençant par la construction d’un carré parfait jusqu’à être capable de mesurer la distance Terre-Lune qui me servira de base pour mesurer la distance nous séparant de notre étoile. En fouillant sur mon site, vous trouverez d’autres articles intermédiaires sur les savoirs anciens afin de reconstituer tous les jalons entre ces deux travaux.

Tous ces savoirs ont probablement été acquis progressivement sans qu’aucun miracle ou aide extérieure de quelconque nature ait été nécessaire. Il suffit de gravir un échelon à la fois pour se rendre sur le toit de l’édifice des connaissances. Évidemment, lorsque l’échelle utilisée n’est plus visible, il est normal de croire à des interventions externes ou surnaturelles. Pourtant, rien de tel n’était absolument requis pour que nos lointains ancêtres finissent par connaitre plusieurs secrets bien gardés de la Nature, dont la distance Terre-Soleil.

Comme dans mes articles précédents sur les savoirs anciens, je discute avec pharaon Khoufou et je lui transmets la méthodologie utilisée pour aller plus loin sur la route du savoir scientifique. Ici, le saut sera vertigineux puisque nous nous transporterons là où réside le dieu Râ vénéré par tous les anciens Égyptiens.

— Cher mystérieux volatile, je ne vous ai pas souvent croisé depuis plusieurs mois et j’avoue que nos rencontres me manquent. Durant la dernière séance, vous m’avez appris à mesurer la distance nous séparant de la Belle-de-nuit à partir uniquement de connaissances élémentaires. Vous savez, cet exploit m’a grandement impressionné. J’ai maintenant le sentiment de détenir les plus grands secrets de l’Univers et c’est bien grâce à vous.

— Mon très grand et illustrissime zygomycète de pharaon, vous ne possédez pas encore le savoir absolu, même si vous vous en rapprochez. Il vous reste un important secret de la Nature à connaitre. Un secret fabuleux que je peux vous apprendre.

— Quel est-il, bon sang? Et expliquez-moi pourquoi je l’ignore toujours, avant de vous faire avaler toutes vos plumes pour me l’avoir caché.

— Cher Chlamydia asymptomatique et vénérien vénéré Khoufou, je ne pouvais vous en parler avant.

— Et pourquoi donc, espèce d’énigmatique et très bientôt embroché conseiller?

— Il vous fallait connaitre et comprendre comment nous avons mesuré la distance entre la Lune et votre Majestueuse Grandeur avant de vous attaquer à plus grand secret encore.

— Allez-vous enfin cracher le morceau ou devrai-je demander à mes crocodiles de vous recracher en morceaux?

— Cette punition ne s’avèrera pas nécessaire, oh Archaeopteryx albersdoerferi, je vous le dis à l’instant. Que diriez-vous de connaitre un secret émanant directement de votre lignée royale et j’ai nommé votre géniteur céleste, le grand Râ en personne?

— Si vous m’apprenez un secret sans nul autre égal, je vous épargne les crocs.

— Je voudrais plus qu’être épargné, j’épargne depuis très longtemps et ce secret mérite largement une caisse remplie de merveilles.

— Je me demandais bien quand vous y arriveriez. Tous ces savoirs gracieusement transmis sans rien demander en retour, je vous trouvais très suspect. Maintenant que vous me dévoilez vos désirs, je peux maintenant vous accorder ma confiance. C’est d’accord. Une caisse de joyaux royaux si votre secret est à la hauteur de vos prétentions.

— Il l’est. Je m’apprête à vous apprendre comment connaitre la distance vous séparant de votre dieu et père céleste.

Coucher-de-soleil-sur-Montréal

— Ah! je me souviens maintenant! Vous me l’aviez promis lors de notre dernière rencontre, mais cette idée m’a semblé si impossible et ridicule que je l’avais oubliée. Cette information m’est évidemment inestimable. J’avais dans l’idée de vous donner une petite caisse de bijoux, je vous en donnerai une moyenne si vous réussissez.

— Votre générosité est incomparable, grand Khoufou dysacromélique.

— Faux! Ma générosité sera comparable à ma cruauté si vous échouez. Vous me titillez une seconde fois avec ce secret, vous n’aurez pas de seconde chance.

— Alors, commençons par nous remémorer la distance Terre-Lune acquise l’autre jour grâce à l’éclipse lunaire. Vous pouvez me la donner en coudées, je ferai la conversion en mètres, euh je veux dire en longueur sacrée.

— Si je me souviens bien de votre leçon, la Lune se trouve à 926 millions de coudées populaires.

— Bravo, chère Dessiccation dendrochronologique. Ce jalon nous sera essentiel pour le prochain calcul. Il nous reste une seule inconnue et pour la trouver, nous devons la mesurer avec grande précision. J’ai choisi aujourd’hui pour le faire car, comme vous le remarquez dans le ciel diurne actuel, la Lune est visible et elle se trouve exactement au quart de son cycle mensuel.

— Oui, on la voit à demi éclairée par Râ.

— C’est exact et ce point est crucial pour nos calculs, car nous utiliserons une fois de plus le principe des triangles possédant un angle droit pour faire nos calculs, comme le triangle 3-4-5. Puisque nous voyons une demi-Lune parfaite, le trio Terre-Lune-Soleil forme donc un triangle dont l’un des anges est droit.

Distance_Terre-Soleil

Voyez sur ce dessin. Cependant, ne vous fiez pas aux dimensions des objets ni des distances sur ce papyrus, ils ne sont là que pour comprendre le principe de la mesure que nous ferons et du calcul qui s’ensuivra. En réalité, le Soleil est beaucoup plus gros, mais aussi beaucoup plus loin.

— Je comprends votre dessin, nous nous sommes servis du même principe pour établir la rectitude de la base de ma pyramide ainsi que pour mesurer la circonférence terrestre.

— C’est tout à fait exact et nous ferons de même avec la distance vous séparant de Râ. Il nous suffit maintenant de mesurer l’angle Ø le plus précisément possible. J’ai déjà posé au sol les cordes nécessaires.

— Je remarque qu’à partir de notre position actuelle, la corde rouge est parfaitement alignée avec la Lune et que la corde verte se rapproche de la direction du Soleil, mais elle n’est pas parfaitement alignée.

— Tout à fait, je voulais vous faire participer à la mesure. Je vais prendre l’extrémité de la corde verte. Vous me ferez signe de me déplacer vers la gauche ou vers la droite jusqu’à ce que je sois parfaitement aligné avec le Soleil. Je déposerai la corde à cet endroit en l’étirant pour qu’elle trace une ligne bien droite. Je reviendrai ensuite pour prendre la mesure de l’angle Ø formé par les cordes rouge et verte.

— Mon ébène ami, selon mon immodeste avis, vos deux cordes rouge et verte forment un angle droit.

— Vous vous souvenez comment tracer des angles parfaitement droits, pharaonique greluche!

— Bien sûr, vous me l’avez montré au moment de tracer la base de ma Grande pyramide.

— Alors refaisons l’exercice avec la corde rouge et une corde rose pour voir si la corde verte forme un angle parfaitement droit avec la rouge.

… (Lire l’article «Une base parfaitement carrée»)

— Par toutes les momies d’Égypte! La corde verte n’est pas parfaitement à angle droit avec la rouge!

— À l’œil nu, la différence n’est pas évidente, mais en étant rigoureux, on voit qu’il existe un petit angle entre les cordes verte et rose. Elles ne se superposent pas parfaitement. Je mesure maintenant les proportions des deux angles formés par la corde verte et je trouve que le grand-angle Ø est 57,4 fois plus grand que le petit.

— Fantastique! Euh! Et on fait quoi avec ce constat?

— On calcule que le Soleil se trouve à une distance 389 fois plus éloignée de la Terre que la Lune ne l’est de nous. En considérant que cette dernière distance vaut 926 millions de coudées, Râ se trouve donc à 360 mille millions de coudées populaires de votre Majestueuse future décrépitude enrubannée. Ça représente environ 150 mille millions de longueurs sacrées que je nomme parfois «mètre», ou encore 150 millions de kilomètres.

— Hé bien! Cette distance est bien trop grande pour la parcourir à bord de ma barque mortuaire et encore plus pour mes maigres jambes vieillissantes. J’attendrai donc que Râ vienne en personne me chercher. Il saura bien trouver le moyen de me transporter aussi loin. N’est-il pas un dieu après tout?

— Très certainement. Sage décision. Me permettez-vous d’emprunter un de vos porteurs pour rapporter ma moyenne caisse?

— J’allais presque oublier votre récompense. Ne dépensez pas tout! Gardez-en pour les jours sombres, Le Corbot. Je me fais vieux et le prochain pharaon Kephren pourrait bien se foutre de vos grandes connaissances,

— J’en prends bonne note et je suivrai vos conseils. En y faisant attention, je pourrais bien en avoir pour les 45 prochains siècles!

— Que sera la vie dans si longtemps?

— Je serais prêt à miser le contenu de ma moyenne caisse que votre belle pyramide tiendra toujours debout.

— Ce serait vraiment emballant! Qu’est-ce qui vous le fait croire de façon aussi certaine, cher Corbot?

— Et si je vous révélais un tout dernier secret, mon très précieux Pharaon?

— Encore plus important que celui d’aujourd’hui?

— À vous de voir. Et celui-là, je vous le fais gratuitement, en remerciement pour votre générosité.

— Allez-y, Tenebricosus Corvus, je suis prêt à tout entendre!

— J’en doute, mais qui sait? Croyez-vous, cher Pharaon, aux voyages temporels?

Savoirs anciens, les dimensions de la Terre et le mètre

Dans un article précédent, j’ai prouvé au pharaon Khéops que la Terre était sphérique en utilisant des instruments de mesure disponibles à cette époque. Dans celui-ci, je poursuis mon récit et j’obtiens les dimensions de notre planète, toujours en utilisant une méthode des plus simple. J’en déduis également le mètre que je nommerai « la valeur sacrée ».

Coordonnées géographiques modernes de Gizeh et d’Assiout.
Gizeh :     30° 00’ N – 31° 10’ E
Assiout:  27° 00’ N – 31° 10’ E

Ces deux villes partagent le même méridien (31° 10’ E) et sont à 3 degrés de latitude de différence qui correspond au 1/30e d’un quart de la Terre.

Ces 3° d’angle mesurés sont ensuite utilisés pour déterminer les dimensions de la Terre.

*****

— Alors, très pharaonique Australopithecus Khéops, comme je disais, les deux mesures différentes des ombres à la même date-heure à des endroits éloignés le long d’un même méridien terrestre permettent de prouver facilement que la Terre est ronde. En connaissant la distance entre les deux villes et en le calculant pour 90°, j’ai mesuré le quart de la circonférence terrestre.

— Et cela donne quelle longueur, croustillant Corbot cornélien ?

— 24 millions de coudées populaires, c’est la distance du pôle Nord à l’Équateur, un quart de la circonférence totale de la Terre, oh Grand Acétominophène !

Preuve-Terre-Ronde

— Et qu’avez-vous fait ensuite pour déterminer la coudée royale de mon père ?

— J’ai décidé de diviser ce nombre pour obtenir un chiffre valant 10 millions d’une unité que j’ai appelée la « valeur sacrée » (4 500 ans plus tard, à partir de la même méthode, quelques scientifiques utiliseront le même chiffre et lui donneront le nom de « mètre »).

— Donc, la coudée royale serait le dix millionième de la distance pôle-équateur ?

— Non, car cette longueur s’avère trop grande pour une coudée, même royale. Elle équivaut à la hauteur de votre nombril par rapport au sol.

— Ouais, je vois le problème. Cette mesure sacrée ne peut pas s’appeler coudée, même royale, même pharaonique. On peut exagérer, mais là, ce serait vraiment de l’abus. Qu’avez-vous alors fait ?

— Cette valeur sacrée équivaut à 2,4 coudées populaires. Il faut donc la diviser pour créer une coudée royale qui sera plus grande que la coudée populaire, mais pas trop.

— Divisez-la simplement par deux !

— J’y avais pensé, mais cette simple division m’agaçait puisque je la voulais toute aussi sacrée afin de conserver le statut exceptionnel de cette nouvelle mesure. Diviser une valeur sacrée par le nombre le plus commun qui soit aurait représenté une sorte de sacrilège.

— Évidemment, je ne vous l’aurais jamais pardonné, avisé et prudent Corbot !

— Puisque je venais de prouver que la Terre est ronde, rien ne peut être plus sacré que cette figure géométrique. En m’inspirant des cercles, j’ai donc préservé tout le caractère sacré de sa nouvelle mesure.

— En faisant quoi ?

— J’ai dessiné un cercle dont le diamètre vaut cette « mesure sacrée ». J’ai ensuite dessiné un hexagone inscrit dans ce cercle, car les côtés de cette figure mesurent précisément le rayon du cercle. Les 6 pointes de l’hexagone définissent 6 arcs de cercle. J’en mesure la longueur et je la compare à celle de la coudée populaire. Elle est environ un quart de fois supérieure. C’est parfait, me dis-je ! La coudée royale était née.

Roue-Hex-Coudee-2

— Une coudée royale issue de la forme et des dimensions de la Terre. Une coudée parfaite qui cache une « valeur sacrée » cryptée au centre d’un cercle dont le périmètre mesure 6 de ces coudées royales. Bravo rusé Corbot noctiluque !

— Vous noterez un élément intéressant dans tout cet exercice, Mirifique Paradichlorobenzène. Les chiffres 6 et 60 ainsi que plusieurs de leurs multiples reviennent constamment dans mes ouvrages, ils se retrouvent littéralement partout. La base sexagésimale (60) est le multiple des chiffres 6 et 10. Les 360 degrés d’un cercle proviennent de cette base (6 x 60). Les 60 minutes et 60 secondes le sont également. Quant aux 24 heures, lorsqu’on divise la Terre en 4 quarts, le Soleil balaye chaque quart-de-cercle en 6 heures.

— Sauf que la base sexagésimale n’est pas utilisée dans le chiffre de dix millions que vous avez choisi pour créer la « valeur sacrée ».

— C’est exact, car cette valeur est si sacrée qu’elle représentera la seule base de travail dans un futur lointain. Elle portera le nom de « mètre » et sera utilisée par l’ensemble de l’humanité à la grandeur de toute la planète, sauf pour quelques peuples barbares qui rechigneront avant de l’adopter quand même, surtout en sciences.

— Une longueur maitre utilisée par tous et partout dans le monde. Une longueur valable pour tous les habitants, car tirée de la Terre et utilisée pour la première fois par nous, les Égyptiens. Je ne peux être plus heureux du choix de vos calculs.

— Pour les effectuer, j’ai choisi deux villes relativement proches l’une de l’autre et seulement séparées par 3°. J’aurais pu choisir des villes bien plus éloignées, mais le nombre précis de foulées en ligne droite serait devenu bien plus difficile à garantir. D’autre part, puisque le Nil serpente, il y a très peu d’endroits le long de son cours où la longitude est la même qu’à Gizeh, ce qui est le cas pour Assiout.

Terre-Gizeh-Assiout

— Expliquez-moi le terme « longitude ».

— Imaginez la Terre comme une orange tournant sur elle-même autour d’une paille passant par sa queue et son nombril.

— Je la vois très bien.

— Chacun des espaces entre ses différentes tranches est appelé un méridien et le chiffre servant à les distinguer est la longitude.

— Ah ! Donc, vous vous êtes déplacé le long du Nil en restant le plus possible le long du même méridien.

Méridien-Gizeh-Assiout

— C’est exact. Gizeh et Assiout partagent un même méridien et ces villes sont suffisamment éloignées pour commencer à distinguer les dimensions des ombres entre les deux endroits. Il existe un autre point beaucoup plus éloigné, légèrement au-delà de la frontière avec la Nubie le long du Nil, qui possède la même longitude. Par contre, il est séparé de Gizeh d’une distance trop importante pour la mesurer précisément à l’aide de foulées. Le Nil possède trop de méandres entre les deux lieux pour effectuer le trajet vers le sud en ligne droite.

— Si je comprends bien, le fait que l’Égypte s’étire en longueur dans l’axe nord-sud vous a permis de mesurer la rotondité de la Terre.

— Le Nil a forgé l’Égypte à plus d’un titre, cher Pharaon ?

Informations supplémentaires

J’ai évidemment procédé à quelques petites approximations afin de faciliter les calculs et la compréhension, mais dans l’ensemble, tout est rigoureusement plausible et exact.

J’ai utilisé des degrés, des foulées et des coudées, des unités de mesure existantes à cette époque, mais puisque tout n’est que rapports (fractions), on peut utiliser n’importe quelles unités et on obtiendrait les mêmes dimensions terrestres. Il n’est donc pas nécessaire de travailler en degrés, en foulées et en coudées. Dans mes calculs, j’ai défini que la coudée populaire vaudrait aujourd’hui approximativement 41,67 cm. Ainsi, une foulée équivaut à un facteur réaliste de 4/3 coudées.

La base sexagésimale (60) a été inventée voilà 5 000 ans par les Sumériens, donc avant l’ère des grands bâtisseurs de l’Égypte (4 500 ans).

Dans mon récit, je postule que Khéops et sa dynastie sont les bâtisseurs des grandes pyramides. Ce n’est pas une affirmation de ma part, mais simplement un moyen d’imager la méthode employée pour mesurer la Terre. Au besoin, remplacez Khéops par le nom de votre choix.

Cette méthode était parfaitement accessible aux premières dynasties d’Égyptiens et même à ceux qui auraient pu les précéder. En fait, n’importe quel individu sachant observer et réfléchir, peu importe son lieu sur Terre et son époque pouvait obtenir les mêmes résultats. Elle n’a rien de magique et elle ne nécessite aucun extraterrestre ni aucun voyage dans l’espace pour prouver que notre planète est une sphère. Avis aux négationnistes en la matière, vous êtes 5 000 ans en retard. Rendu là, on peut vous qualifier d’attardés sans que cela constitue une insulte, mais simplement une vérité.

Nous possédons la preuve que le grec Eratosthène a utilisé la même méthode voilà 2 200 ans pour mesurer la circonférence de la Terre. Oui, les érudits de cette époque reculée et tous ceux qui les ont succédé savaient que la Terre était ronde. Que les Égyptiens aient pu le savoir avant les Grecs ne pose aucun problème puisque les maths utilisées restent rudimentaires.

Une rotondité niée et camouflée

La rotondité de la Terre fut cachée pendant les 1 800 ans qui suivirent Eratosthène. Il convient de dire que ce fut le plus long et le plus grand complot de tous les temps. Ce savoir faisait également partie des connaissances de certaines sociétés secrètes dont celle des « Bâtisseurs » qu’on peut faire remonter à plus de trois mille ans et qui s’est par la suite appelée « franc-maçonnerie ».

Le problème consistait à expliquer que, malgré cette rotondité, les choses ne glissaient pas vers un abîme quelconque. Et il était impensable que les autorités (religieuses) ne puissent pas tout expliquer, sauf les mystères religieux, bien entendu.

Une Terre plate ne nécessitait aucune explication… sauf les éléphants géants ou la méga tortue pour la soutenir. Et sur quoi reposaient ces créatures géantes ? C’est à ce moment qu’on vous enfermait pour hérésie si vous osiez poser la question.

Le fait de questionner en utilisant une pensée logique est devenu le péché originel du judaïsme. Il a servi à empêcher les autorités religieuses de perdre la face et leur hégémonique influence sur les gens et les rois s’ils avaient dû avouer leur ignorance.

Alors si vous entendez dire que les complots n’existent pas, notez bien le déclarant et rajoutez son nom sur la liste de ceux qui les fomentent. Les complots existent depuis qu’une quelconque autorité a refusé pour la première fois de voir s’étioler son influence, ses pouvoirs et surtout les avantages matériels y découlant.

Alors, soyez assuré que les conspirations et les complots ont toujours existé ne cesseront pas de sitôt.

Savoirs anciens, la coudée royale égyptienne

Je vous parlais dans des articles antérieurs d’une étrangeté concernant la longueur de la coudée royale égyptienne sans vous dire de quoi il s’agissait. Le temps est venu de vous en faire part.

Dans l’article précédent, j’utilisais une roue dont le périmètre valait exactement 6 coudées royales. La coudée commune utilisée tous les jours par le peuple était issue d’une mesure de la longueur du coude jusqu’à l’extrémité du majeur. Elle tournait autour de 42 à 45 cm, des valeurs normales et réalistes pour une telle longueur. La coudée royale se démarque par son étonnante longueur et on est en droit de se demander si elle était issue d’une mesure prise sur un humain. Voyez par vous-même.

LE-TEMPLE-DE-SALOMON-COUDEE-ROYALE

En mesurant les coudées royales étalons retrouvées à différents endroits, elles ont été estimées à 0,5236 m (52,36 cm), du moins pour certaines. C’est énorme! Les bras de ce pharaon utilisés pour déterminer la coudée royale auraient quasiment trainé par terre!

On peut donc en déduire que la coudée royale n’a rien à voir avec la longueur d’une coudée humaine normale, pas même celle d’un pharaon. Elle devait donc découler d’une autre mesure tout en conservant le nom de coudée, mais en la qualifiant de «royale» afin de montrer que seul le pharaon pouvait s’approprier cette dimension et bâtir en utilisant cet étalon de mesure. Mais d’où pouvait bien provenir cette longueur hors norme pour une coudée?

Alien-4.jpg

Il serait bien tentant de l’imaginer surgir d’un extraterrestre aux longs bras, celui-là même qui aurait fourni outils et techniques avancés ayant servi à édifier ces étonnants monuments. Toutefois, avant de faire intervenir des étrangers d’outre espace, il demeure essentiel d’analyser d’autres possibilités moins exotiques, plus terre à terre et peut-être plus réelles.

Si ces 7 à 10 cm de plus (ou de trop) permettent d’octroyer le qualificatif «royale» à la mesure étalon du pharaon, sa longueur précise n’était certainement pas aléatoire, elle devait émaner d’une source quelconque!

Roue-Hex-Coudee-2

Revenons à la roue possédant un périmètre de 6 coudées que j’ai utilisé pour mesurer avec précision la base de la pyramide du promoteur immobilier Khéops (Khoufou) et comparons le périmètre étalon avec nos mesures métriques actuelles.

6 coudées de 0,5236 m donnent un périmètre exact de 3,1416 m. En connaissant le pourtour de cette roue, son diamètre est facile à calculer en le divisant par une approximation bien connue de pi (π), soit 3,1416. Un cercle ayant un périmètre de 3,1416 m possède un diamètre π fois moindre. Ce diamètre vaut donc précisément 1,0000 mètre!

Holà! Je vois toutes les têtes se tourner vers LeCorbot. Le mètre est une invention très récente en regard à l’histoire égyptienne puisque sa première définition remonte à l’année 1793, pas à 2500 ans avant notre ère!

metre-etalon-place-vendome

J’ai utilisé une roue de 6 coudées royales de périmètre pour mesurer précisément les dimensions de la pyramide de Khéops et je me rends compte que cette roue possède un diamètre exact de 1 mètre moyennant une erreur de moins d’un dix millième de mètre! Sincèrement, je déteste ce genre de hasard un peu trop précis, un peu trop surprenant, un peut trop… révélateur peut-être.

1200px-Kilometre_definition.svg.png

Rapportons-nous à la première définition officielle du mètre. C’est le dix millionième du quart de la circonférence de la Terre mesurée le long d’un méridien. Donc, si les anciens Égyptiens connaissaient eux aussi la circonférence de la Terre, ils pouvaient très bien faire comme nos scientifiques de la fin du XVIIIe siècle et en déduire une mesure étalon. Toutefois, le mètre égyptien comparable à notre propre mètre n’aurait pas été utilisable comme mesure étalon à cause de sa trop grande différence avec la coudée commune (42-45 cm). D’autre part, camoufler la longueur de ce mètre, le crypter en quelque sorte en le dissimulant dans un cercle représente une méthode élitiste qui ne pouvait déplaire à un pharaon.

Cependant, l’hypothèse que ce dernier puisse connaitre la longueur du méridien terrestre à cette époque archaïque si reculée semble ridicule. On en revient encore à un possible extraterrestre qui a le don de pouvoir tout expliquer sans jamais vraiment rien expliquer. C’est toujours pratique de garder un ET sous la main, ça évite de chercher à comprendre ce qui aurait pu réellement se passer en réfléchissant à des solutions moins extravagantes.

006

Car il existe effectivement une solution plus réaliste dans laquelle la géographie particulière de l’Égypte pourrait expliquer comment ce peuple aurait connu la circonférence de la Terre aux méridiens à une époque aussi reculée. Pour vous la présenter, je vous rapporterai une conversation tenue entre moi et le pharaon Khoufou autour de sa fameuse coudée royale étalon lorsque je travaillais à lui construire sa damnée pyramide. Vous apprendrez comment un individu observateur et un peu dégourdi de cette époque reculée a pu mesurer sans grands efforts le quart du périmètre de la Terre et en arriver lui aussi à déduire le mètre. À lire dans un prochain article.