Platitude spatiale

Durant toute notre enfance, nous avons suivi avec intérêt ou, au contraire, avec amertume ou difficulté, des cours de géométrie durant lesquels nous avons calculé des angles de triangles totalisant 180°, nous avons appris que deux droites parallèles ne se rejoignent jamais et que si elles ne sont pas parallèles, elles finissent par se toucher en un seul point.

Même si cette formation date de longtemps, la majorité des gens pensent encore de cette façon. Dans la vie de tous les jours, cette géométrie est valable et on lui a donné le nom de géométrie euclidienne en hommage au célèbre géomètre grec Euclide.

Pourtant, ce que nos profs ont passé sous silence afin de respecter le cursus et nos prétendues capacités limitées à apprendre, et probablement parce qu’ils ne connaissaient rien d’autre, c’est que cette géométrie constitue une exception, un idéal jamais réellement atteint, une limite entre deux autres géométries qui se touchent exactement à cet endroit. En réalité, la géométrie euclidienne n’existe pas vraiment. Elle constitue simplement une approximation très pratique, car beaucoup plus simple que les sœurs siamoises opposées que sont les deux autres géométries non euclidiennes.

L’exemple le plus simple d’une géométrie non euclidienne est notre bonne vieille Terre. Au ras du sol et sur de courtes distances, les règles de la géométrie euclidienne semblent parfaitement exactes. Les triangles possèdent des angles totalisant 180°, les droites parallèles ne se touchent pas et si des droites se touchent, elles le font en un seul point.

couleur ours.png

Pourtant, il suffit de prendre de l’altitude et tracer de très grands triangles et de grandes droites pour constater qu’Euclide ne faisait que des approximations puisque la somme des angles d’un triangle formé de trois lignes droites au sol totalise plus de 180°. Deux méridiens sont des droites parallèles et pourtant ils se rejoignent. Et même si on les considère comme étant non parallèles, ils se recoupent aux deux pôles, et non juste une fois. La surface de la Terre étant convexe (sphérique), sa géométrie n’est pas euclidienne et les règles établies par ce génie du passé ne s’appliquent pas.

En utilisant des surfaces concaves plutôt que convexes, on obtient des triangles dont la somme des angles est inférieure à 180° et des droites parallèles qui elles aussi se rejoignent. Une selle de cheval et les toits de constructions s’y apparentant comme au Saddledome de Calgary sont de bons exemples de géométries concaves (hyperboliques) non euclidiennes.

6842e15a63827407284b31b3acd603b.jpg_1200x630.jpg

On comprend ainsi mes affirmations précédentes. La platitude géométrique est un mythe puisque rien ne peut vraiment être absolument plat.

Vous seriez probablement tenté de vous reporter à l’espace, à l’ensemble de l’Univers et à ses trois axes spatiaux. Selon vous, ils forment certainement des angles parfaitement droits entre chaque paire d’axes. Comment pourrait-il en être autrement ?

Ce concept était convenu avant les travaux d’un certain Albert Einstein qui publia en 1915 un article fondamental de physique qui devint la théorie de la relativité générale.

Sans entrer dans ses détails, elle contient un élément important se rapportant à la platitude spatiale. Il consiste dans le fait que l’espace se plie en présence de masse. Considérant que l’univers contient de la masse, il se replie de manière concave ou convexe dépendant de la quantité de matière qu’il contient. Pas suffisamment d’énergie et il ressemble à une selle, un peu trop, et il prend la forme d’une sphère.

courbures1

Toutes les expériences visant à déterminer la forme de l’Univers se sont soldées par un étrange constat. Même les plus précises tendent à montrer que l’Univers serait… parfaitement plat. Si ce résultat vous semble peut-être normal, pour moi ce hasard me semble plutôt difficile à avaler. L’Univers posséderait exactement la quantité de matière précise pour obtenir un espace parfaitement plat respectant la géométrie euclidienne.

Pensez à une machine choisissant au hasard un nombre compris entre –∞ et +∞ et qu’elle tombe miraculeusement sur le zéro. C’est impossible que l’Univers soit parfaitement plat et pourtant il l’est.

Je me suis questionné sur cette étrange coïncidence, car je n’y crois pas. Je devais trouver une cause, une façon d’expliquer la platitude spatiale sans faire intervenir le plus curieux des hasards.

Rétroaction

La seule autre façon logique de retrouver une géométrie spatiale euclidienne est que l’Univers possède une boucle de rétroaction qui diminuerait la masse de l’Univers si elle est plus grande que la masse critique et qui l’augmenterait si elle devient trop petite.

L’annihilation ou la création de masse (énergie) surviendrait si la forme de l’espace n’est pas exactement plate. Ainsi, un univers convexe ou concave serait une situation instable cherchant à retrouver son état de plus basse énergie qui serait un univers plat.

Pensez à une plaque métallique qu’on cherche à plier. Qu’elle courbe dans un sens ou dans l’autre, elle revient inévitablement à son état qui lui demande le moins d’énergie, sa platitude.

Autre conséquence non négligeable de ce phénomène, le principe de la conservation de l’énergie ne serait pas une loi, mais l’observation de cette rétroaction.

L’Univers peut créer de l’énergie, mais il peut également en détruire. L’équilibre s’obtient par rétroaction. Trop de destruction engendrerait une accélération de création d’énergie et vice versa.

Mon idée de rétroaction expliquerait la platitude spatiale ainsi que la loi de la conservation de l’énergie et surtout, elle repousse l’idée d’un incroyable hasard survenu au moment du big bang créant exactement la bonne quantité de matière pour engendrer un univers parfaitement plat.

Je poursuivrai cette idée dans un autre article afin d’expliquer ce qui survint juste après le moment zéro signant la création de notre Univers. J’en profiterai pour expliquer plus en détail le schéma de la boucle de rétroaction conservant la platitude de l’espace.

Savoirs anciens, la distance Terre-Soleil

Mon récent article intitulé «La pyramide» m’a fait penser que je n’avais jamais publié le dernier de la série sur les savoirs anciens. Le voici donc avec beaucoup de retard, mais comme on dit «Vieux motard que j’aimais».

Ça parait idiot de penser que les anciens peuples, qu’ils soient Mésopotamien, Égyptien, Sumérien, Maya ou toute autre culture ayant vécue à ce qu’on croit être le début des civilisations puissent connaitre des informations complexes de nature astronomique sans qu’elles n’aient été transmises par des entités plus savantes.

Pourtant, munis uniquement d’instruments de mesure de fortune, du sens de l’observation, de méthodologie, de mathématiques simples et de déductions logiques utilisant les connaissances déjà acquises, il fut parfaitement possible à ces peuples de connaitre une information aussi impressionnante que la distance Terre-Soleil.

Je vous invite à lire ou à relire mes différents articles sur les «savoirs anciens» puisqu’ils constituent un échafaudage sur lequel chaque connaissance acquise est judicieusement utilisée pour déduire la suivante, en commençant par la construction d’un carré parfait jusqu’à être capable de mesurer la distance Terre-Lune qui me servira de base pour mesurer la distance nous séparant de notre étoile. En fouillant sur mon site, vous trouverez d’autres articles intermédiaires sur les savoirs anciens afin de reconstituer tous les jalons entre ces deux travaux.

Tous ces savoirs ont probablement été acquis progressivement sans qu’aucun miracle ou aide extérieure de quelconque nature ait été nécessaire. Il suffit de gravir un échelon à la fois pour se rendre sur le toit de l’édifice des connaissances. Évidemment, lorsque l’échelle utilisée n’est plus visible, il est normal de croire à des interventions externes ou surnaturelles. Pourtant, rien de tel n’était absolument requis pour que nos lointains ancêtres finissent par connaitre plusieurs secrets bien gardés de la Nature, dont la distance Terre-Soleil.

Comme dans mes articles précédents sur les savoirs anciens, je discute avec pharaon Khoufou et je lui transmets la méthodologie utilisée pour aller plus loin sur la route du savoir scientifique. Ici, le saut sera vertigineux puisque nous nous transporterons là où réside le dieu Râ vénéré par tous les anciens Égyptiens.

— Cher mystérieux volatile, je ne vous ai pas souvent croisé depuis plusieurs mois et j’avoue que nos rencontres me manquent. Durant la dernière séance, vous m’avez appris à mesurer la distance nous séparant de la Belle-de-nuit à partir uniquement de connaissances élémentaires. Vous savez, cet exploit m’a grandement impressionné. J’ai maintenant le sentiment de détenir les plus grands secrets de l’Univers et c’est bien grâce à vous.

— Mon très grand et illustrissime zygomycète de pharaon, vous ne possédez pas encore le savoir absolu, même si vous vous en rapprochez. Il vous reste un important secret de la Nature à connaitre. Un secret fabuleux que je peux vous apprendre.

— Quel est-il, bon sang? Et expliquez-moi pourquoi je l’ignore toujours, avant de vous faire avaler toutes vos plumes pour me l’avoir caché.

— Cher Chlamydia asymptomatique et vénérien vénéré Khoufou, je ne pouvais vous en parler avant.

— Et pourquoi donc, espèce d’énigmatique et très bientôt embroché conseiller?

— Il vous fallait connaitre et comprendre comment nous avons mesuré la distance entre la Lune et votre Majestueuse Grandeur avant de vous attaquer à plus grand secret encore.

— Allez-vous enfin cracher le morceau ou devrai-je demander à mes crocodiles de vous recracher en morceaux?

— Cette punition ne s’avèrera pas nécessaire, oh Archaeopteryx albersdoerferi, je vous le dis à l’instant. Que diriez-vous de connaitre un secret émanant directement de votre lignée royale et j’ai nommé votre géniteur céleste, le grand Râ en personne?

— Si vous m’apprenez un secret sans nul autre égal, je vous épargne les crocs.

— Je voudrais plus qu’être épargné, j’épargne depuis très longtemps et ce secret mérite largement une caisse remplie de merveilles.

— Je me demandais bien quand vous y arriveriez. Tous ces savoirs gracieusement transmis sans rien demander en retour, je vous trouvais très suspect. Maintenant que vous me dévoilez vos désirs, je peux maintenant vous accorder ma confiance. C’est d’accord. Une caisse de joyaux royaux si votre secret est à la hauteur de vos prétentions.

— Il l’est. Je m’apprête à vous apprendre comment connaitre la distance vous séparant de votre dieu et père céleste.

Coucher-de-soleil-sur-Montréal

— Ah! je me souviens maintenant! Vous me l’aviez promis lors de notre dernière rencontre, mais cette idée m’a semblé si impossible et ridicule que je l’avais oubliée. Cette information m’est évidemment inestimable. J’avais dans l’idée de vous donner une petite caisse de bijoux, je vous en donnerai une moyenne si vous réussissez.

— Votre générosité est incomparable, grand Khoufou dysacromélique.

— Faux! Ma générosité sera comparable à ma cruauté si vous échouez. Vous me titillez une seconde fois avec ce secret, vous n’aurez pas de seconde chance.

— Alors, commençons par nous remémorer la distance Terre-Lune acquise l’autre jour grâce à l’éclipse lunaire. Vous pouvez me la donner en coudées, je ferai la conversion en mètres, euh je veux dire en longueur sacrée.

— Si je me souviens bien de votre leçon, la Lune se trouve à 926 millions de coudées populaires.

— Bravo, chère Dessiccation dendrochronologique. Ce jalon nous sera essentiel pour le prochain calcul. Il nous reste une seule inconnue et pour la trouver, nous devons la mesurer avec grande précision. J’ai choisi aujourd’hui pour le faire car, comme vous le remarquez dans le ciel diurne actuel, la Lune est visible et elle se trouve exactement au quart de son cycle mensuel.

— Oui, on la voit à demi éclairée par Râ.

— C’est exact et ce point est crucial pour nos calculs, car nous utiliserons une fois de plus le principe des triangles possédant un angle droit pour faire nos calculs, comme le triangle 3-4-5. Puisque nous voyons une demi-Lune parfaite, le trio Terre-Lune-Soleil forme donc un triangle dont l’un des anges est droit.

Distance_Terre-Soleil

Voyez sur ce dessin. Cependant, ne vous fiez pas aux dimensions des objets ni des distances sur ce papyrus, ils ne sont là que pour comprendre le principe de la mesure que nous ferons et du calcul qui s’ensuivra. En réalité, le Soleil est beaucoup plus gros, mais aussi beaucoup plus loin.

— Je comprends votre dessin, nous nous sommes servis du même principe pour établir la rectitude de la base de ma pyramide ainsi que pour mesurer la circonférence terrestre.

— C’est tout à fait exact et nous ferons de même avec la distance vous séparant de Râ. Il nous suffit maintenant de mesurer l’angle Ø le plus précisément possible. J’ai déjà posé au sol les cordes nécessaires.

— Je remarque qu’à partir de notre position actuelle, la corde rouge est parfaitement alignée avec la Lune et que la corde verte se rapproche de la direction du Soleil, mais elle n’est pas parfaitement alignée.

— Tout à fait, je voulais vous faire participer à la mesure. Je vais prendre l’extrémité de la corde verte. Vous me ferez signe de me déplacer vers la gauche ou vers la droite jusqu’à ce que je sois parfaitement aligné avec le Soleil. Je déposerai la corde à cet endroit en l’étirant pour qu’elle trace une ligne bien droite. Je reviendrai ensuite pour prendre la mesure de l’angle Ø formé par les cordes rouge et verte.

— Mon ébène ami, selon mon immodeste avis, vos deux cordes rouge et verte forment un angle droit.

— Vous vous souvenez comment tracer des angles parfaitement droits, pharaonique greluche!

— Bien sûr, vous me l’avez montré au moment de tracer la base de ma Grande pyramide.

— Alors refaisons l’exercice avec la corde rouge et une corde rose pour voir si la corde verte forme un angle parfaitement droit avec la rouge.

… (Lire l’article «Une base parfaitement carrée»)

— Par toutes les momies d’Égypte! La corde verte n’est pas parfaitement à angle droit avec la rouge!

— À l’œil nu, la différence n’est pas évidente, mais en étant rigoureux, on voit qu’il existe un petit angle entre les cordes verte et rose. Elles ne se superposent pas parfaitement. Je mesure maintenant les proportions des deux angles formés par la corde verte et je trouve que le grand-angle Ø est 57,4 fois plus grand que le petit.

— Fantastique! Euh! Et on fait quoi avec ce constat?

— On calcule que le Soleil se trouve à une distance 389 fois plus éloignée de la Terre que la Lune ne l’est de nous. En considérant que cette dernière distance vaut 926 millions de coudées, Râ se trouve donc à 360 mille millions de coudées populaires de votre Majestueuse future décrépitude enrubannée. Ça représente environ 150 mille millions de longueurs sacrées que je nomme parfois «mètre», ou encore 150 millions de kilomètres.

— Hé bien! Cette distance est bien trop grande pour la parcourir à bord de ma barque mortuaire et encore plus pour mes maigres jambes vieillissantes. J’attendrai donc que Râ vienne en personne me chercher. Il saura bien trouver le moyen de me transporter aussi loin. N’est-il pas un dieu après tout?

— Très certainement. Sage décision. Me permettez-vous d’emprunter un de vos porteurs pour rapporter ma moyenne caisse?

— J’allais presque oublier votre récompense. Ne dépensez pas tout! Gardez-en pour les jours sombres, Le Corbot. Je me fais vieux et le prochain pharaon Kephren pourrait bien se foutre de vos grandes connaissances,

— J’en prends bonne note et je suivrai vos conseils. En y faisant attention, je pourrais bien en avoir pour les 45 prochains siècles!

— Que sera la vie dans si longtemps?

— Je serais prêt à miser le contenu de ma moyenne caisse que votre belle pyramide tiendra toujours debout.

— Ce serait vraiment emballant! Qu’est-ce qui vous le fait croire de façon aussi certaine, cher Corbot?

— Et si je vous révélais un tout dernier secret, mon très précieux Pharaon?

— Encore plus important que celui d’aujourd’hui?

— À vous de voir. Et celui-là, je vous le fais gratuitement, en remerciement pour votre générosité.

— Allez-y, Tenebricosus Corvus, je suis prêt à tout entendre!

— J’en doute, mais qui sait? Croyez-vous, cher Pharaon, aux voyages temporels?

Librations

L’humain connait la Lune, notre satellite naturel, depuis qu’il lève les yeux vers le ciel. Alors sauriez-vous répondre à cette petite question? Quel est le pourcentage de la surface de la Lune observable de la Terre?

Ouais, vous n’êtes pas très astronome et les caractéristiques des astres ne vous émoustillent pas vraiment. Je sais. Malgré tout, vous pensez connaitre la réponse à cette question somme toute aisée.

7447053_343ff1b2-deb1-11e7-9a47-bf3c08145785-1_1000x625

La Lune nous montre toujours la même face, c’est bien connu. Vous ignorez certainement pourquoi, cependant à cause de ce phénomène, vous déduisez ce qui suit. La Lune est une sphère et si elle nous montre toujours la même face, on voit alors 50 % de toute sa surface.

Vous seriez même tenté de réduire un peu ce pourcentage puisque tout le rebord n’est pas très facile à observer, voire quasiment impossible. Est-ce que le chiffre de 45 % vous semblerait plus réaliste? Probablement.

pleineulune.jpg

Toutefois, le vrai pourcentage observable de la surface lunaire est plus proche de 59 %. Hein? Comment peut-on voir une bonne partie de sa face « cachée »? C’est à cause des librations, le terme utilisé pour parler de ce phénomène.

La Lune nous montre toujours la même face puisque sa période de rotation (sur elle-même) est égale à sa période de révolution (autour de la Terre). Ce n’est pas un hasard. Les forces de marée entre les deux astres incitent le moins massif des deux à atteindre plus rapidement ce point d’équilibre en ralentissant graduellement sa rotation jusqu’à l’atteinte du verrouillage, un point de moindre énergie.

Pleine-Lune

Et pour prouver que rien ne sera simple, il existe quatre types de librations, raisons pour lesquelles le pourcentage de surface visible atteint 59 %. Parlons des librations en longitude, des librations en latitude, des librations parallactiques et enfin des librations physiques.

Les librations en longitude sont dues à la forme elliptique de l’orbite lunaire autour de la Terre. Les librations en latitude dépendent de l’angle de cette orbite par rapport à son angle de rotation qui est de 6,7 degrés. Réparties sur plusieurs lunaisons, nous observons un peu plus du pôle Nord et ensuite un peu plus du pôle Sud. La Lune semble hocher du bonnet.

ob_9a96d7_moon-sur-blog-rene-dumonceau

À douze heures d’intervalle, on peut également voir encore plus de sa surface grâce à l’effet de parallaxe, c’est lorsque nous nous trouvons alternativement du côté gauche et du côté droit de la Terre lorsqu’elle tourne sur elle-même. L’angle créé entre ces deux positions par rapport à la Lune est suffisant pour en voir encore un peu plus. Ce sont les librations parallactiques.

Et enfin les librations physiques se rapportent aux oscillations réelles de notre satellite, car pour rester ainsi verrouillée, la Lune oscille légèrement comme tout objet en « équilibre ». Ces petites oscillations autour d’un point central permettent de voir un peu plus de sa surface lorsque ces mouvements s’additionnent aux autres librations. Et voilà pourquoi 9 % de sa face cachée nous sont tout de même accessibles depuis la Terre. Les 41 % restants ne peuvent être vus que si nous nous déplaçons physiquement dans l’espace, nous ou nos instruments.

cover-r4x3w1000-57df810861bd4-pleine-lune_0

Promenez-vous sur le web et observez attentivement plusieurs photos de la pleine Lune. Vous verrez qu’elle se montre légèrement différente d’un cliché à l’autre. Vous n’aviez jamais porté attention à ce phénomène? La belle-de-nuit se dévoile bien plus à qui sait l’admirer.

Savoirs anciens, la Terre sphère

Pour ceux qui auraient raté les précédents articles, sachez que j’ai voyagé dans le temps pour discuter avec le pharaon Khoufou (Khéops) en vue de lui construire une belle pyramide. Pour l’occasion, il m’a remis un étalon de mesure, un bout de bois appelé «coudée royale égyptienne», qui se distingue d’une coudée populaire par une longueur plus élevée.

Vous pouvez lire ou relire les articles précédents en cliquant sur ce lien et sur celui-ci ou passer directement à la suite qui relate la façon dont j’ai établi que la Terre est une sphère voilà 4 500 ans. D’autres articles suivront pour expliquer comment il a été possible de mesurer les dimensions de la Terre et ensuite en arriver à déterminer la longueur d’une coudée royale égyptienne.

*****

— Grand Khoufou, connaissez-vous la provenance du bâton servant de coudée royale égyptienne étalon que vous m’avez remise l’autre jour afin que je mesure la base de votre future pyramide?

— Charbonneux Corbot, sachez que cette mesure étalon m’a été léguée par mon père, le maigrelet et détestable Snéfrou, lui-même bâtisseur d’horribles pyramides devant l’éternel Rê. Que Dieu-Soleil ait son âme, mais surtout qu’il la garde!

— Personne ne sera plus célébrissime que vous, oh! Pharaonique Ornithorynque et votre future pyramide mystifiera toutes les générations ainsi que votre père pour l’éternité!

— Il n’a jamais voulu m’apprendre d’où provenait cette coudée royale. C’était un être mesquin et imbu de sa personne. En construisant une pyramide plus impressionnante que les siennes, je veux le remettre à sa place, bien plus que de laisser ma propre trace dans ce monde. Ma pyramide servira surtout à déclasser ses affreuses constructions bringuebalantes afin qu’il gagne un peu d’humilité dans l’au-delà.

— Si vous m’en donnez l’ordre, grand Hurluberlu, je vous apprendrai comment votre père a obtenu cette coudée royale étalon.

— Vous connaissez sa provenance? Dites-moi tout ce que vous savez, c’est un ordre, ténébreux corvidé!

— Comme vous voulez, oh Cœlacanthe silicaté! Vous avez dû le constater, cette mesure ne provient pas du pharaonique coude de votre père. En fait, elle émane de plus grand que lui, puisqu’elle a été inspirée par la Terre mère en personne.

— J’aime ça! Racontez-moi tout. Mon détestable de père Snéfrou va se retourner dans son sarcophage et ses bandelettes vont lui décoller du corps! J’en pisse déjà de plaisir dans mon pharaonique pagne!

— Votre père voulait une mesure étalon royale pour distinguer ses constructions de celles du peuple. La coudée populaire devait évidemment être plus courte que celle qui serait utilisée pour ses propres réalisations. Il m’embauche donc afin de concevoir une mesure plus longue que la coudée populaire, mais dans des proportions relativement proches afin qu’elle reste pratique. Il voulait utiliser sa propre coudée, mais elle s’avérait plus courte que la coudée populaire en usage parmi le peuple. Je lui ai bien fait sentir que l’idée d’une coudée pharaonique inférieure à l’autre le rabaisserait. Il m’a alors demandé de trouver une longueur qui transcenderait toutes les époques et tous les pharaons après lui. Une coudée intemporelle.

— Ça lui ressemble. Tout devait être éternel, même ses excréments! Continuez, emplumé conseiller, je veux tout savoir.

gnomon

— Bien sûr, Grandiose Alphatocophérol. Un jour durant un de mes voyages à la limite du Soudan en passant par la Nubie en Haute-Égypte, j’observe que mon bâton de marche planté bien à la verticale dans le sol ne crée aucune ombre au sol!

— Vous dites qu’en Nubie, le Soleil monte si haut dans le ciel qu’il peut totalement faire disparaitre les ombres?

— À une certaine époque durant l’année, l’ombre du bâton au zénith se confond avec lui. Un corbeau en vol continue de faire une ombre au sol, mais celle-ci est parfaitement à la verticale avec l’oiseau.

— Je vois. Ici à Gizeh, le Soleil crée toujours des ombres au sol, peu importe la journée ou l’heure dans l’année. Les cadrans solaires le montrent bien.

Cadran-solaire-égyptien

— Et voilà ce qui est surprenant. En remontant le Nil vers le sud, le Soleil semble se comporter différemment tandis que si je m’éloigne vers l’ouest ou vers l’est, je ne noterai aucun changement dans le comportement des ombres.

Mais pourquoi les ombres sont-elles plus courtes lorsque nous allons au sud en Nubie? C’est vraiment très étrange! Et encore plus si elles restent identiques lorsqu’on adopte une direction perpendiculaire.

Méridien-Gizeh-Assiout

 

— Les ombres sont plus courtes à Assouan, à Louxor et même tout près à Assiout. Plus on remonte le Nil, plus les ombres raccourcissent, oh! Honorable Peroxyde d’hydrogène. Ce phénomène passe presque inaperçu si nous restons près de Gizeh.

— Et en quoi ce comportement de Rê vous a-t-il permis de déterminer la coudée royale égyptienne de mon père?

— Le dieu Rê n’a rien à voir avec la différence des longueurs des ombres, le dieu Soleil reste le même partout, c’est la Terre qui se montre différente à lui puisqu’elle est… hum… ronde.

— Ronde? Ronde comme une assiette ou ronde comme une boule?

— C’est une boule qui tourne sur elle-même, votre Éternel Encéphalogramme. J’ai mesuré la longueur des ombres qu’un bâton de cinq coudées projetait au sol ici à Gizeh ainsi qu’à Assiout lors de la même journée de l’année. Avec ces informations, je suis parvenu à calculer les dimensions de notre Terre. J’ai ici un schéma pour vous montrer à quoi mes travaux ont ressemblé.

— Et vous avez utilisé les dimensions de la Terre-boule pivotante pour définir celle de la coudée royale.

— C’est exact.

Ombres-Gizeh-Assiout

— Mais si la Terre est ronde, pourquoi ne glisse-t-on pas alors que, d’après votre théorie, nous nous retrouvons sur son flanc?

— Pour simplifier, dites-vous que nous sommes tous attirés par le centre de la Terre. Peu importe notre position sur Terre, il est donc impossible de glisser puisque le bas se trouve toujours parfaitement à la verticale sous nos pieds.

— Je comprends. Je vais donc vous demander quelque chose de plus pour ma pyramide, cher Caliméro. En plus d’utiliser la coudée royale, vous allez intégrer les dimensions de notre Terre dans celles de mon bâtiment.

— Oui, votre Majestueux Polypropylène.

*****

Dans un prochain article, je poursuivrai mon récit afin d’en arriver à mesurer la circonférence de la Terre et toujours avec les moyens connus et disponibles à l’ère de Khéops.

Savoirs anciens — Une base parfaitement carrée

Cet article reprend les notions présentées dans celui d’hier en rapport avec le triangle rectangle de proportions 3-4-5, mais sa lecture n’est pas requise pour comprendre la suite.

Me voici donc à Gizeh sur un haut plateau dominant les constructions environnantes. Mon client, un certain dénommé Khoufou, pharaon de profession, m’a commandé la construction d’un énorme bâtiment de forme pyramidale devant présenter des dimensions parfaites. Sa base doit donc posséder quatre côtés rigoureusement identiques, mais également quatre angles identiques qu’on appelle «droits». De fait, 4 côtés identiques ne suffisent pas à définir un carré, un losange étant le contre-exemple.

J’utilise évidemment la coudée royale comme étalon de mesure pour cette pyramide qui fera 440 coudées de chaque côté. Il ne faut pas se le cacher, ce bâtiment surpassera tout ce qui s’est déjà construit, du moins en hauteur. Mais avant de penser à entasser des pierres, imaginons un moyen de tracer sa base, un carré parfait. Je rencontre Pharaon pour discuter de cette première tâche qui s’avère cruciale pour tout le reste à suivre, évidemment.

7f0806b960d4aa2bc9fb3f8ef8579537.jpg

— LeCorbot, donnez-moi la liste du matériel et le nombre de travailleurs dont vous aurez besoin pour parachever cette première tâche. Je veux également savoir quand vous aurez terminé de tracer ce carré selon les sévères exigences qui vous ont été transmises.

Je lui tends un bout de papier qui le fait largement sourciller.

— LeCorbot, vous me prenez pour un pharaon, pour un idiot ou pour un désœuvré?

— Grand Khoufou, je vous jure que cette liste représente tout ce dont j’ai besoin.

— Une longue cordelette que vous mesurerez vous-même, six petits piquets de bois, quelques bouts de ficelle, un maillet et une coudée royale étalon. Avec ceci, vous prétendez pouvoir tracer la base parfaite de mon pharaonique bâtiment dont je n’ai pas encore défini son usage final!

— C’est exact, votre Grandeur et future bienveillante asséchée Momie.

— Je ne vous donnerai pas jusqu’à la prochaine crue pour terminer ce premier travail!

— Ce ne sera pas nécessaire. Laissez-moi jusqu’au zénith, ce sera amplement suffisant, oh Grand Escogriffe!

— Jamais entendu ce compliment avant aujourd’hui. Grand Escogriffe, ça me donne un air royal et léonin, j’aime bien. Vous me plaisez, cher noir volatile! Combien de travailleurs désirez-vous?

— Aucun, sérénissime et majestueux Barbichu! Je préfère travailler seul.

— Vous êtes certainement fou, mais puisque je ne perdrai que quelques heures, soit. Cependant, si vous me décevez, vous dormirez ce soir dans la fosse aux lions.

— Je n’oserais jamais faire planter les royales dentitions félines dans mes impropres chairs. Cet honneur représenterait une bien trop fabuleuse récompense pour un simple architecte. Trouvez autre chose à donner à vos lions. N’ayez de doute, j’utilise une technique très économique, mais des plus performantes.

— Je ne crois personne et encore moins un rusé Corbot! J’irai inspecter votre travail juste après le zénith. Mes lions m’accompagneront, question de leur faire flairer leur prochain repas.

— Je garde toute ma confiance en mes moyens, votre Macronissime Altesse. Aux environs de midi, je prendrai une bouchée en vous attendant. Y a-t-il un Subway dans les parages?

— Un quoi?

— Bah! Laissez tomber. Trouver un sous-marin dans un désert, c’est pas de la tarte! Je me contenterai de la bouffe locale, tiens, pourquoi pas une tarte? Pourvu qu’il y ait de la bière fraiche! Il fait une de ces chaleurs!

— Bien entendu nous avons de la bière! Nous sommes un peuple civilisé même si nous vivons dans un carré de sable! Nous ne sommes pas de buveurs de jus de chaussettes fabriqués avec de vulgaires raisins!

*****

La technique

La description suivante prouvera que tracer la base de la pyramide de Khéops est pour moi un jeu d’enfant comme le laisse entendre la petite liste de matériel remise au promoteur. Tout ce dont j’ai besoin, en plus de ce matériel plus que rudimentaire, est de connaitre le fameux théorème de Pythagore et surtout son célèbre triangle de dimensions 3-4-5 avec lequel je créerai une équerre géante d’excellente qualité qui me servira à déterminer les quatre coins (O, A, B, C) du futur bâtiment. Pourquoi ce triangle en particulier? Il possède la fabuleuse propriété de n’avoir que des nombres entiers presque semblables qui me permettront de diviser facilement et très précisément la longueur totale de la corde.

Base-pyramide.png

Étape préparatoire

Je dois tracer la base de la pyramide de Khéops, un carré parfait de 440 coudées de côté selon le décret du Pharaon. Ce nombre n’est pas anodin comme nous le verrons maintenant. Je prends une très longue cordelette. Je mesure une longueur du triple de la dimension décrétée, soit 1320 coudées. Je la plie en 3 et je noue un bout de ficelle aux deux coudes de la corde qui donnent, sans devoir les mesurer, les distances 440 coudées correspondant au repère 1, et 880 coudées pour désigner le repère 3, les deux mesures étant prises à partir de la même extrémité de la corde. Je plie ensuite la même corde en 4 pour trouver la longueur 330 coudées à partie de sa seconde extrémité jusqu’au premier coude de la corde pliée. Je lui fais correspondre le repère 2 que j’indique avec un autre bout de ficelle noué à cet endroit précis.

Remarque: La mesure initiale de la corde à 1320 coudées a été produite avec la coudée royale étalon fournie par Khoufou. Ce travail multiplie l’erreur et la valeur précise de 440 coudées s’en trouve ainsi affectée. Il existe un moyen de donner à la corde une plus grande précision par une technique que je présentai dans un autre article et qui comporte en plus une surprise de taille.

Étape bleue

Je dispose la corde au sol, je relie ensemble ses 2 extrémités, je plante un premier piquet à cet endroit et sa position détermine le coin O de la pyramide. Je tire la corde en direction nord correspondant à l’alignement d’un premier côté de la pyramide, et ce jusqu’au repère 1 situé à 440 coudées sur la corde. Je plante un piquet juste à cet endroit, voilà donc le coin A, le deuxième de la pyramide.

Remarque: Si vous désirez savoir comment je suis parvenu à trouver le nord exact avec des moyens primitifs, je vous en ferai part dans un autre article.

Pour trouver les deux autres coins, les choses deviennent un peu plus subtiles. Je tire ensuite la corde pour la tendre en direction est, celle correspondant au deuxième côté, vers le coin B. Inutile de chercher à calculer un angle droit, celui-ci se créera de lui-même. Lorsque j’atteins le repère 3 sur la corde, je plante un piquet à cet endroit en m’assurant que la corde soit parfaitement bien tendue, c’est le point M. Cependant, ce piquet n’indique pas un coin de la pyramide, mais seulement une direction avec le coin O situé aux trois quarts de la position du troisième coin. Par contre, je viens de tracer un angle droit parfait avec le côté 1 de la pyramide valant exactement 440 coudées tel que requis. J’ai déjà déterminé deux coins sur quatre, un côté sur quatre et un angle droit sur quatre. Le travail progresse rapidement et midi est encore loin. Les lions auront droit à du mouton ce soir.

Étape rouge

J’intervertis simplement les deux segments de corde en conservant le même alignement pour les deux côtés à 90 degrés. Je plante un piquet vers le Nord, cette fois, exactement au repère 2 de 330 coudées, c’est le point N. J’aligne le repère 1 valant 440 coudées en direction de la ligne formée du coin O et du point M. Je tends bien la corde. Le repère 1 sur celle-ci indique que je viens de trouver le coin B de la pyramide, le troisième. J’y plante un autre piquet et le côté 2 du futur bâtiment est maintenant tracé. Bilan provisoire: 3 coins sur 4, 2 côtés sur 4 et 1 angle de 90° sur 4.

Étape verte

Je déplace le repère zéro de la corde pour le mettre au coin A. Je place le repère 2 de la corde situé à 880 coudées au piquet placé au coin B. Je tire bien la corde en direction du coin C dont j’ignore encore sa position exacte, mais ce n’est pas grave, la corde tendue et le repère 1 me le révèleront. Je plante un piquet précisément à ce repère. Voilà la quatrième extrémité de la pyramide, le coin C, ainsi que le traçage des côtés 3 et 4 de la base de ce futur fabuleux monument. Les trois autres angles droits ont également été directement obtenus en plantant ce dernier piquet. Je rallonge ensuite la corde jusqu’à une valeur de 1760 coudées, je trace ensuite le périmètre complet du carré parfait en joignant les 4 piquets O, A, B et C. Le travail est terminé.

Notez que je n’ai jamais eu besoin de recourir à la diagonale du carré pour créer ce dernier. Heureusement, car sa longueur précise est un nombre irrationnel et il est bien difficile dans ces temps anciens de la déterminer à partir de la longueur d’un des côtés et d’une corde pliée. Cependant, en bon architecte, je m’octroie une dernière étape, celle de la preuve de l’exactitude de mon carré que j’utiliserai pour démontrer la qualité de mon travail au Pharaon.

Étape orange

Tout d’abord, je m’assure de la même longueur des 4 côtés de la pyramide en utilisant l’origine de la corde et le même repère 1 pour chaque côté. Une fois ce test réussi, je peux maintenant procéder à l’équerrage des 4 angles grâce aux diagonales du carré.

Je me fous d’ignorer la longueur des deux diagonales, car je peux facilement tester leur similitude en comparant simplement leur longueur. Si les deux diagonales diffèrent le moindrement, les 4 angles ne sont pas tous à 90°, nul besoin de mesurer ces angles pour le prouver.

En obtenant des diagonales rigoureusement identiques, je prouve l’exactitude de la forme carrée du périmètre sans jamais utiliser la valeur de leur longueur qui peut rester totalement inconnue. En bonus, je trouve le centre exact de la pyramide, le point X situé à l’intersection des deux lignes.

Épilogue

En l’espace de quelques instants et sans aucun calcul, à l’aide d’une simple corde et de quelques piquets, je viens de tracer la base parfaitement carrée de la plus formidable pyramide de tous les temps. De plus, point très important, peu importe la longueur exacte de la corde utilisée au départ, cette technique assure le traçage d’un carré aux côtés rigoureusement identiques et aux angles exactement de 90° sans recourir à aucun extraterrestre… du moins, pour cette première étape.

Par contre, je viens de déboulonner le mythe attribuant à Pythagore le principe du triangle rectangle 3-4-5. Il est certainement possible que les Anciens utilisaient ces proportions sans avoir prouvé son exactitude comme l’a fait Pythagore bien plus tard. Ils avaient probablement constaté les rapports proportionnels entiers 3-4-5 de manière empirique et cela suffisait amplement pour garantir la qualité de leurs constructions.

La pyramide de Khéops mesure effectivement 440 coudées royales de côté. Ce chiffre permet d’obtenir des longueurs du triangle 3-4-5 de 330, 440 et 550 coudées en les multipliant par 110, faisant en sorte qu’aucune mesure de fractions de coudées n’est requise nulle part. Hasard? J’en doute.

La technique présentée dans cet article est bien plus précise que celle constamment utilisée par des poseurs de pavés qui tirent deux ficelles et ajustent l’angle droit avec une toute petite équerre placée à l’intersection des cordes. Leur imprécision rendrait hilare n’importe quelle momie pharaonique m’ayant vu à l’œuvre.

Pharaon fut satisfait du travail accompli grâce aux preuves que je lui ai apportées. Il a donné son assentiment royal puisqu’il avait parfaitement compris ma méthode en regard de sa très grande simplicité. Elle s’avérait si évidente que Khoufou n’a même pas pris la peine de la noter. D’après lui, «n’importe quel enfant de cinq ans saurait la reproduire». 4500 ans plus tard, il semblerait que nous ayons une pénurie d’enfants de cinq ans puisque nous nous extasions sur ce puéril exploit en lui attribuant des origines des plus mystérieuses.