Savoirs anciens, 60

Dans ma série d’articles sur les savoirs anciens, je me permets une brève incursion du côté arithmétique pour parler du nombre 60. Cela peut paraitre étonnant que ce nombre soit si présent dans notre quotidien, et ce depuis des temps immémoriaux.

La valeur 60 a envahi la vie d’homo sapiens dans un passé lointain. Attestée chez les Sumériens voilà plus de 5000 ans, les Babyloniens l’ont ensuite adoptée. On le retrouve plus tard dans les calendriers hindou et chinois. Par la suite, les Grecs, les Indiens, les Arabes, les Égyptiens et les Européens ont tous adopté cette base de calcul pour mesurer le temps et les angles.

1200px-Protractor_Rapporteur_Degrees_V3

Un cercle est divisé en 360 degrés (6 x 60), chaque degré en 60 minutes et chaque minute en 60 secondes. Une journée est divisée en 24 heures (4 x 6), chaque heure en 60 minutes et chaque minute en 60 secondes.

On voit que la base 60 n’était pas globalement utilisée comme notre base 10 actuelle. 24 (heures) ne divise pas 60, mais cela s’explique. On doit en fait considérer la base 60 comme étant la multiplication de deux bases. D’une part, les facteurs 5 et 12 donnent 60, de même que les valeurs 6 et 10. Ces deux multiplications correspondent à deux moyens de facilement compter jusqu’à 60 à l’aide de nos deux mains.

Oui, nos ancêtres apprenaient à compter sur leurs doigts jusqu’à 60 et pas seulement jusqu’à 10 comme nous ! Comme quoi l’avancement des connaissances se permet parfois de reculer. Certains peuples actuels continuent toujours de compter de la sorte, reliquat d’une culture multimillénaire. La plus utilisée est la technique des phalanges. Excluant le pouce qui sert de marqueur, les 4 autres doigts d’une même main contiennent 3 phalanges chacune pour un total de 12. Le bout du pouce désigne à la suite les 3 phalanges de l’auriculaire, de l’annulaire, du majeur et de l’index pour un compte de 12. La deuxième main lève alors 1 doigt pour désigner qu’on a atteint 1 fois ce compte. En recommençant ce processus jusqu’à ce que les 5 doigts de la seconde main soient tous levés, on a atteint le compte de 60. On a donc 60 en ayant multiplié 5 fois le nombre 12.

Toujours pour compter 60 à l’aide de deux mains, il existe une deuxième technique qui multiplie 10 fois le chiffre 6. La main droite compte en levant 1 doigt à la fois. Une fois les 5 doigts levés, on lève 1 doigt de la main gauche pour un total de 6 levés de doigts. Lorsque la main gauche est pleine, on a atteint le compte de 30. En inversant le rôle des deux mains et en recommençant le processus précédent, on parvient à obtenir la valeur 60.

Diviser la demi-journée en 12 heures, celles pouvant s’afficher sur un cadran solaire, ne constituait donc pas un choix aléatoire. Les anciens ont donc obtenu une journée complète totalisant 24 heures. Une fois l’heure définie, ils l’ont subdivisé en 60 minutes et chaque minute en 60 secondes.

Les 360 degrés d’un cercle peuvent paraitre plus mystérieux. On n’obtient pas des quadrants de 60 degrés mais 90. Diviser un cercle en 6 portions de 60 degrés peut paraitre géométriquement illogique. Et pourtant, une raison précise pourrait se terrer sous cette étrange division. J’en réfère à mon article sur un autre savoir ancien où j’inscris un hexagone dans un cercle. En reliant le centre du cercle à chaque sommet de l’hexagone, on obtient bien 6 angles de 60 degrés. Et pourquoi choisir d’inscrire un hexagone plutôt que toute autre figure géométrique ? Parce que chacun de ses côtés mesure précisément la valeur du rayon du cercle. Ainsi, l’hexagone et le cercle ont une relation intime qui pouvait s’avérer très utile. Ainsi, subdiviser un cercle en 6 portions de 60 degrés parait bien plus sensé qu’à priori. En reprenant pour le degré la subdivision temporelle des 60 minutes et 60 secondes, on obtient la précision des angles désirée.

Roue-Hex-Angles

Et voilà comment la base sexagésimale a marqué nos mesures, celle du temps qui passe ainsi que celle des subdivisions d’un cercle. Notez qu’un mouvement cyclique comme celui d’un bœuf qui tourne autour d’un axe relie les notions de temps et de géométrie. Il est donc normal de retrouver les minutes et les secondes dans les deux notions.

Dernier point non négligeable, les six premiers chiffres divisent 60 et il en possède six autres pour un total de douze facteurs (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60). Il est donc possible de subdiviser 60 en parts égales de douze façons différentes. Dans un monde où on comptait des valeurs entières, têtes de bétail, œufs, baies, lapins, perdrix, etc., compter par groupes de 60 unités pour ensuite les subdiviser également parmi la communauté constituait un atout de taille.

En définitive, la base sexagésimale (60) ne doit rien aux hasards, mais bien à des considérations pratiques compréhensibles pour chacun des habitants des temps anciens. La valeur 60 désignait peut-être aussi un grand nombre au-delà duquel on devenait riche, l’ancêtre de notre million ou notre milliard. L’humain n’avait pas encore transformé ses avoirs en papier-monnaie qu’il pourrait accumuler sans limites. 60 chèvres l’occupaient suffisamment pour qu’il n’espère pas en posséder bien plus, une façon naturelle d’éviter les abus des systèmes économiques. Oui, lorsqu’on doit travailler fort pour conserver son dû, on manque de temps pour en rajouter. Pourrait-on se servir de cette leçon de l’histoire pour revoir le prochain système économique lorsque l’actuel collapsera ? La base 60 reprendra peut-être du service au-delà de la mesure du temps et des angles.

Savoirs anciens, les dimensions de la Terre et le mètre

Dans un article précédent, j’ai prouvé au pharaon Khéops que la Terre était sphérique en utilisant des instruments de mesure disponibles à cette époque. Dans celui-ci, je poursuis mon récit et j’obtiens les dimensions de notre planète, toujours en utilisant une méthode des plus simple. J’en déduis également le mètre que je nommerai « la valeur sacrée ».

Coordonnées géographiques modernes de Gizeh et d’Assiout.
Gizeh :     30° 00’ N – 31° 10’ E
Assiout:  27° 00’ N – 31° 10’ E

Ces deux villes partagent le même méridien (31° 10’ E) et sont à 3 degrés de latitude de différence qui correspond au 1/30e d’un quart de la Terre.

Ces 3° d’angle mesurés sont ensuite utilisés pour déterminer les dimensions de la Terre.

*****

— Alors, très pharaonique Australopithecus Khéops, comme je disais, les deux mesures différentes des ombres à la même date-heure à des endroits éloignés le long d’un même méridien terrestre permettent de prouver facilement que la Terre est ronde. En connaissant la distance entre les deux villes et en le calculant pour 90°, j’ai mesuré le quart de la circonférence terrestre.

— Et cela donne quelle longueur, croustillant Corbot cornélien ?

— 24 millions de coudées populaires, c’est la distance du pôle Nord à l’Équateur, un quart de la circonférence totale de la Terre, oh Grand Acétominophène !

Preuve-Terre-Ronde

— Et qu’avez-vous fait ensuite pour déterminer la coudée royale de mon père ?

— J’ai décidé de diviser ce nombre pour obtenir un chiffre valant 10 millions d’une unité que j’ai appelée la « valeur sacrée » (4 500 ans plus tard, à partir de la même méthode, quelques scientifiques utiliseront le même chiffre et lui donneront le nom de « mètre »).

— Donc, la coudée royale serait le dix millionième de la distance pôle-équateur ?

— Non, car cette longueur s’avère trop grande pour une coudée, même royale. Elle équivaut à la hauteur de votre nombril par rapport au sol.

— Ouais, je vois le problème. Cette mesure sacrée ne peut pas s’appeler coudée, même royale, même pharaonique. On peut exagérer, mais là, ce serait vraiment de l’abus. Qu’avez-vous alors fait ?

— Cette valeur sacrée équivaut à 2,4 coudées populaires. Il faut donc la diviser pour créer une coudée royale qui sera plus grande que la coudée populaire, mais pas trop.

— Divisez-la simplement par deux !

— J’y avais pensé, mais cette simple division m’agaçait puisque je la voulais toute aussi sacrée afin de conserver le statut exceptionnel de cette nouvelle mesure. Diviser une valeur sacrée par le nombre le plus commun qui soit aurait représenté une sorte de sacrilège.

— Évidemment, je ne vous l’aurais jamais pardonné, avisé et prudent Corbot !

— Puisque je venais de prouver que la Terre est ronde, rien ne peut être plus sacré que cette figure géométrique. En m’inspirant des cercles, j’ai donc préservé tout le caractère sacré de sa nouvelle mesure.

— En faisant quoi ?

— J’ai dessiné un cercle dont le diamètre vaut cette « mesure sacrée ». J’ai ensuite dessiné un hexagone inscrit dans ce cercle, car les côtés de cette figure mesurent précisément le rayon du cercle. Les 6 pointes de l’hexagone définissent 6 arcs de cercle. J’en mesure la longueur et je la compare à celle de la coudée populaire. Elle est environ un quart de fois supérieure. C’est parfait, me dis-je ! La coudée royale était née.

Roue-Hex-Coudee-2

— Une coudée royale issue de la forme et des dimensions de la Terre. Une coudée parfaite qui cache une « valeur sacrée » cryptée au centre d’un cercle dont le périmètre mesure 6 de ces coudées royales. Bravo rusé Corbot noctiluque !

— Vous noterez un élément intéressant dans tout cet exercice, Mirifique Paradichlorobenzène. Les chiffres 6 et 60 ainsi que plusieurs de leurs multiples reviennent constamment dans mes ouvrages, ils se retrouvent littéralement partout. La base sexagésimale (60) est le multiple des chiffres 6 et 10. Les 360 degrés d’un cercle proviennent de cette base (6 x 60). Les 60 minutes et 60 secondes le sont également. Quant aux 24 heures, lorsqu’on divise la Terre en 4 quarts, le Soleil balaye chaque quart-de-cercle en 6 heures.

— Sauf que la base sexagésimale n’est pas utilisée dans le chiffre de dix millions que vous avez choisi pour créer la « valeur sacrée ».

— C’est exact, car cette valeur est si sacrée qu’elle représentera la seule base de travail dans un futur lointain. Elle portera le nom de « mètre » et sera utilisée par l’ensemble de l’humanité à la grandeur de toute la planète, sauf pour quelques peuples barbares qui rechigneront avant de l’adopter quand même, surtout en sciences.

— Une longueur maitre utilisée par tous et partout dans le monde. Une longueur valable pour tous les habitants, car tirée de la Terre et utilisée pour la première fois par nous, les Égyptiens. Je ne peux être plus heureux du choix de vos calculs.

— Pour les effectuer, j’ai choisi deux villes relativement proches l’une de l’autre et seulement séparées par 3°. J’aurais pu choisir des villes bien plus éloignées, mais le nombre précis de foulées en ligne droite serait devenu bien plus difficile à garantir. D’autre part, puisque le Nil serpente, il y a très peu d’endroits le long de son cours où la longitude est la même qu’à Gizeh, ce qui est le cas pour Assiout.

Terre-Gizeh-Assiout

— Expliquez-moi le terme « longitude ».

— Imaginez la Terre comme une orange tournant sur elle-même autour d’une paille passant par sa queue et son nombril.

— Je la vois très bien.

— Chacun des espaces entre ses différentes tranches est appelé un méridien et le chiffre servant à les distinguer est la longitude.

— Ah ! Donc, vous vous êtes déplacé le long du Nil en restant le plus possible le long du même méridien.

Méridien-Gizeh-Assiout

— C’est exact. Gizeh et Assiout partagent un même méridien et ces villes sont suffisamment éloignées pour commencer à distinguer les dimensions des ombres entre les deux endroits. Il existe un autre point beaucoup plus éloigné, légèrement au-delà de la frontière avec la Nubie le long du Nil, qui possède la même longitude. Par contre, il est séparé de Gizeh d’une distance trop importante pour la mesurer précisément à l’aide de foulées. Le Nil possède trop de méandres entre les deux lieux pour effectuer le trajet vers le sud en ligne droite.

— Si je comprends bien, le fait que l’Égypte s’étire en longueur dans l’axe nord-sud vous a permis de mesurer la rotondité de la Terre.

— Le Nil a forgé l’Égypte à plus d’un titre, cher Pharaon ?

Informations supplémentaires

J’ai évidemment procédé à quelques petites approximations afin de faciliter les calculs et la compréhension, mais dans l’ensemble, tout est rigoureusement plausible et exact.

J’ai utilisé des degrés, des foulées et des coudées, des unités de mesure existantes à cette époque, mais puisque tout n’est que rapports (fractions), on peut utiliser n’importe quelles unités et on obtiendrait les mêmes dimensions terrestres. Il n’est donc pas nécessaire de travailler en degrés, en foulées et en coudées. Dans mes calculs, j’ai défini que la coudée populaire vaudrait aujourd’hui approximativement 41,67 cm. Ainsi, une foulée équivaut à un facteur réaliste de 4/3 coudées.

La base sexagésimale (60) a été inventée voilà 5 000 ans par les Sumériens, donc avant l’ère des grands bâtisseurs de l’Égypte (4 500 ans).

Dans mon récit, je postule que Khéops et sa dynastie sont les bâtisseurs des grandes pyramides. Ce n’est pas une affirmation de ma part, mais simplement un moyen d’imager la méthode employée pour mesurer la Terre. Au besoin, remplacez Khéops par le nom de votre choix.

Cette méthode était parfaitement accessible aux premières dynasties d’Égyptiens et même à ceux qui auraient pu les précéder. En fait, n’importe quel individu sachant observer et réfléchir, peu importe son lieu sur Terre et son époque pouvait obtenir les mêmes résultats. Elle n’a rien de magique et elle ne nécessite aucun extraterrestre ni aucun voyage dans l’espace pour prouver que notre planète est une sphère. Avis aux négationnistes en la matière, vous êtes 5 000 ans en retard. Rendu là, on peut vous qualifier d’attardés sans que cela constitue une insulte, mais simplement une vérité.

Nous possédons la preuve que le grec Eratosthène a utilisé la même méthode voilà 2 200 ans pour mesurer la circonférence de la Terre. Oui, les érudits de cette époque reculée et tous ceux qui les ont succédé savaient que la Terre était ronde. Que les Égyptiens aient pu le savoir avant les Grecs ne pose aucun problème puisque les maths utilisées restent rudimentaires.

Une rotondité niée et camouflée

La rotondité de la Terre fut cachée pendant les 1 800 ans qui suivirent Eratosthène. Il convient de dire que ce fut le plus long et le plus grand complot de tous les temps. Ce savoir faisait également partie des connaissances de certaines sociétés secrètes dont celle des « Bâtisseurs » qu’on peut faire remonter à plus de trois mille ans et qui s’est par la suite appelée « franc-maçonnerie ».

Le problème consistait à expliquer que, malgré cette rotondité, les choses ne glissaient pas vers un abîme quelconque. Et il était impensable que les autorités (religieuses) ne puissent pas tout expliquer, sauf les mystères religieux, bien entendu.

Une Terre plate ne nécessitait aucune explication… sauf les éléphants géants ou la méga tortue pour la soutenir. Et sur quoi reposaient ces créatures géantes ? C’est à ce moment qu’on vous enfermait pour hérésie si vous osiez poser la question.

Le fait de questionner en utilisant une pensée logique est devenu le péché originel du judaïsme. Il a servi à empêcher les autorités religieuses de perdre la face et leur hégémonique influence sur les gens et les rois s’ils avaient dû avouer leur ignorance.

Alors si vous entendez dire que les complots n’existent pas, notez bien le déclarant et rajoutez son nom sur la liste de ceux qui les fomentent. Les complots existent depuis qu’une quelconque autorité a refusé pour la première fois de voir s’étioler son influence, ses pouvoirs et surtout les avantages matériels y découlant.

Alors, soyez assuré que les conspirations et les complots ont toujours existé ne cesseront pas de sitôt.