Trois générations

La Nature s’avère économe, elle préfère les processus utilisant moins d’énergie, préfère les états stables de moindres niveaux. La Nature peut également se montrer généreuse, parfois sans raison apparente, surtout pour disséminer les aigrettes des pissenlits. Mais qui sommes-nous pour la juger alors que nous ne connaissons presque rien de ses modes opératoires ?

cover-r4x3w1000-57e161bcb3094-cern-protons-collision

Cependant, on oserait croire que certains de ses mystères aient une raison valable d’exister et que celle-ci finisse par nous être connue. Par exemple, l’existence de trois générations de particules élémentaires nous dépasse totalement. Mais commençons par le début, par la première génération de particules, celle de tous les jours.

Fermions1.png

Toute la matière de l’Univers est composée de quatre particules fondamentales appelées fermions. On compte deux leptons et deux quarks. Nous connaissons très bien le premier lepton qui régit toutes les réactions chimiques, il s’agit de l’électron. Le second lepton est beaucoup moins connu, il est électriquement neutre, possède une masse extrêmement faible et ne réagit que très rarement avec le reste de la matière, c’est le neutrino. Quant aux deux quarks, ils se regroupent trois par trois pour composer les protons et les neutrons, ce sont les quarks up et down. On compte deux quarks up et un down dans le proton, un up et deux down dans le neutron.

Voilà, c’est tout. Vous connaissez toutes les particules élémentaires de la matière qui nous entoure. Quatre particules réellement indivisibles (à ce qu’on sait) créent tout le reste, à commencer par les 118 éléments chimiques. Selon l’état actuel de nos connaissances, la Nature aurait très bien pu s’arrêter là, mais la réalité diffère de ce scénario minimaliste et on ne se l’explique toujours pas.

Fermions3

Il existe deux générations supplémentaires de particules élémentaires imitant la principale dans sa forme et sa nature. Elles se différencient par les masses qui se situent bien au-delà, des centaines, des milliers, voire des centaines de milliers de fois plus importantes, mais personne ne comprend le rôle que jouent ces deux générations supplémentaires de particules puisqu’elles ne peuvent persister à l’état naturel.

Gageons que derrière ce bestiaire plus important que prévu de particules élémentaires existe une raison fondamentale qui nous échappe encore, une raison qui engendrerait un monde bien différent sans elles, une raison qui nous enlèverait probablement toutes chances d’exister.

120813115445_1_900x600

Il suffit maintenant de comprendre cette Nature pour encore mieux apprécier comment elle est parfaitement réglée pour favoriser l’émergence de la vie et lui permettre d’évoluer.

soupe.particules

Notez que les particules présentées dans cet article se limitent aux fermions, les particules de matière. Il existe une autre série de particules nommée bosons dont le plus connu est le photon. Cependant, il n’existe pas de générations de bosons, seulement des bosons différents. Vous avez probablement entendu parler du boson de Higgs, le dernier à avoir été découvert.

 

Quelques questions-réponses sur la photographie d’un trou noir

Cet article fait suite à ceux de ces trois derniers jours. 2018-06-112018-06-122018-06-13

Voici une série de questions et de réponses qui pourront vous aider à mieux comprendre le résultat attendu avant la fin 2018 de la première photographie d’un trou noir.

Q — Combien de temps a duré la prise de photographie d’un trou noir en avril 2017?
R — Une semaine

Sagittaire_A*

Q — Quel trou noir a été photographié?
R — La source radio ponctuelle désignée sous le nom de Sagittaire A*. Cette source émet des ondes radio et a été associée au trou noir supermassif résidant au cœur de notre Galaxie. Le trou noir n’émet évidemment pas directement ces ondes. Elles sont un effet sur son environnement lorsqu’il perturbe des nuages de gaz se trouvant dans ses parages.

Q — Est-il photographié en lumière visible?
R — Non. Entre le centre galactique et nous, il y a des poussières et des étoiles en quantités tellement grandes qu’il est absolument impossible de voir un objet en arrière-plan en utilisant les ondes visibles. Le télescope virtuel EHT utilise deux couvertures d’ondes électromagnétiques. Les principales fréquences détectées sont les ondes radio millimétriques et submillimétriques (bandes de fréquences de nos postes de télé et radio commerciales) provenant de ce point de l’espace. La seconde couverture se fait en ultraviolet. Les photons détectés seront ensuite transposés dans des couleurs qu’on peut voir afin de nous montrer un résultat visible pour nos yeux.

635858629467873685

Q — À quoi risque de ressembler la photographie?
R — Au risque de vous décevoir, le résultat risque visuellement d’être très peu ressemblant aux belles images dont je vous abreuve depuis les derniers articles sur le sujet. Comme je le spécifiais dans le précédent article, ces images sont des résultats d’artistes ou de simulations numériques et elles font abstraction de tous les «
défauts» causés par des centaines de causes dont plusieurs seront présents dans les images finales. Les astronomes tenteront d’en éliminer le plus possible, mais elles ne seront certainement pas à la hauteur des attentes des amateurs peu ou mal informés des difficultés.

WIRECENTER

Q — Alors à quoi servira cette photo?
R — Elle sert surtout à valider un protocole de travail très élaboré visant à créer un interféromètre supergéant. Elle sert aussi à améliorer nos connaissances en traitement informatique interférométrique. Elle deviendra également une première «
preuve tangible» plus ou moins convaincante de l’existence réelle des trous noirs qui n’ont été jusqu’à présent que calculés à partir d’une théorie qu’on sait bancale lorsqu’elle flirte avec les infinis.

Q — Comment pourra-t-on améliorer ce résultat dans l’avenir?
R — On pense à un interféromètre mixte utilisant des télescopes spatiaux et terrestres, ce qui agrandirait de beaucoup la résolution du télescope virtuel.

Black-hole-in-a-dwarf-galaxy_625

Q — Sur certaines photos de synthèse, on voit des trous noirs comme une tache alors que d’autres le montrent avec toutes sortes d’effets lumineux aux alentours. Lesquelles de ces simulations se rapprochent de la réalité?
R — Un trou noir stable qui n’a aucune rotation ferait apparaitre une tache ronde noire qui est l’horizon des événements du trou noir. Il sera entouré d’un halo lumineux occasionné par les étoiles en arrière-plan dont les rayons lumineux sont déviés et concentrés aux environs immédiats de cet horizon. Mais un trou noir qui ne tourne pas du tout n’existe probablement pas. Sa rotation apporte des changements à la structure géométrique de l’espace proche du trou noir. Imaginez que vous pincez une maille d’un tricot et que vous tourniez le poignet. Une partie du tricot se déformera autour de la maille pincée et tordue. L’espace autour d’un trou noir fait de même et dans les 3 dimensions. Ce changement à la structure géométrique de l’espace autour du trou noir dévie les rayons lumineux environnants et créera différents effets visuels. Toutefois, selon l’angle avec lequel nous verrons le trou noir, l’angle par rapport à son plan de rotation, le résultat visuel variera beaucoup.

stars_orbit.gif

Q — Comment les astronomes peuvent-ils être certains de la présence d’un trou noir au centre de la Voie lactée ? Et comment ont-ils calculé sa masse et ses dimensions ?

R — Puisqu’il n’a jamais été détecté, on pourrait se demander comment les astronomes savent qu’un trou noir galactique supermassif se cache au cœur de notre Galaxie. Ils ont suivi à la trace durant une dizaine d’années certaines étoiles très proches du centre galactique et ils ont remarqué qu’elles bougeaient. Ils ont tracé leur orbite et trouvé qu’elles tournaient toutes autour d’un point absent sur les photos (voir résultat ci-haut). Selon les lois de la mécanique céleste, il est possible de mesurer la masse de ce point central en fonction des orbites et des masses des étoiles révolutionnant autour. Ils ont donc mesuré une masse d’environ 4 millions de masses solaires. Puisque le volume dans lequel cette masse est concentrée est beaucoup trop petit pour correspondre à un groupe important d’étoiles supergéantes, il ne reste plus que des trous noirs puisque même des étoiles à neutrons seraient obligées de s’agglutiner en se transformant là encore en trou noir.

giphy

Q — C’est bien Einstein qui a prédit l’existence des trous noirs?
R — Faux. Malgré l’insistance dérangeante de plusieurs sites scientifiques à lui attribuer cette prédiction, elle est l’œuvre de Karl Schwarzschild qui fut le premier à calculer une singularité (trou noir) dans les équations d’Einstein en 1916. Einstein lui-même pensait que la Nature avait prévu des mécanismes qui empêchaient ces singularités de survenir. Donc, non seulement Einstein ne les a jamais prédits, mais il n’y croyait tout simplement pas. Même si Einstein a inventé l’outil mathématique, le marteau en quelque sorte, il n’est pas l’auteur de toutes les œuvres créées à partir de celui-ci.

N’hésitez pas à poser vos questions sous forme de commentaire.

Verra-t-on un trou noir en 2018 ? (3)

J’ai entendu votre question et je vous réponds d’entrée de jeu, la réponse est non! Il n’existe aucune photo de l’horizon d’un trou noir nulle part sur Terre. Toutes sont des illustrations d’artiste ou des dessins créés par ordinateur à partir des formules mathématiques tirées de la théorie de la relativité générale d’Einstein. Par contre, ça pourrait changer dès cette année.

black-hole

Poursuivons maintenant notre aventure entreprise avant-hier et hier en présentant quelques concepts astronomiques. Si on veut obtenir une photo d’un horizon d’un trou noir, il faut quand même comprendre comment on pourrait y arriver. Vous verrez qu’il ne suffit pas de relier un iPhone à un télescope.

Tout d’abord, différencions deux concepts des instruments d’optique, leur sensibilité et leur résolution.

La sensibilité dépend dans un premier temps de la qualité du détecteur à transformer les photons en signal électrique. Attachez une patate à un télescope, vous n’obtiendrez pas la photo d’un champ de patate. Ensuite, il y a le nombre de photons qui seront amenés au détecteur. Cette quantité dépend de la taille du télescope, ce qu’on appelle la surface collectrice du miroir principal. Enfin, pour augmenter le nombre de photons, le télescope visera le même point du ciel le plus longtemps possible.

Disque_d'Airy_03

La résolution définit la capacité de l’instrument à différencier deux éléments l’un de l’autre. Elle dépend du nombre de pixels du détecteur, de la fréquence à détecter et aussi de la parallaxe.

La parallaxe est l’angle maximal formé par deux points de la surface collectrice. Plus le diamètre du télescope est grand, plus l’angle sera important et plus son pouvoir de résolution sera important. Un grand miroir aura donc deux avantages. Il collectera plus de photons et il aura un pouvoir de résolution plus important.

Toutefois, aucun télescope terrestre ou spatial n’a la résolution nécessaire pour voir les détails des effets optiques occasionnés par les trous noirs connus, même ceux du petit monstre supermassif caché au centre de notre Galaxie. Peut-on attendre la mise en service en 2025 du télescope E-ELT de 39 mètres de diamètre, mais là encore, sa résolution serait beaucoup trop faible.

Artist’s impression of the European Extremely Large Telescope

Qu’à cela ne tienne! Les astronomes sont des petits futés et ils ont pris la définition de la résolution d’un instrument optique au pied de la lettre. S’il faut augmenter la parallaxe pour améliorer le pouvoir de résolution, il suffit de prendre deux télescopes au lieu d’un seul et de leur faire regarder le même objet en même temps afin de créer un télescope virtuel de meilleure résolution.

Différentes solutions ont été mises de l’avant, dont certaines plus simples, d’autres plus complexes. La plus simple est le concept des jumelles, c’est le cas du BLT (Binary Large Telescope).   

1200px-LargeBinoTelescope_NASA

Pour des télescopes indépendants, il faut trouver le moyen de traiter les signaux reçus par les deux engins pour les faire correspondre exactement dans le temps. On parle alors d’interférométrie. Une fois encore, deux solutions existent. Les interféromètres couplés localement, comme le VLT. Possédant 4 gros et 4 petits télescopes, il est possible de simuler un télescope de 200 mètres de diamètre.

eso0111f

Mais encore là, c’est beaucoup trop peu pour espérer voir l’horizon d’un trou noir. Ça prendrait un télescope au moins des dimensions… de… de… la Terre. Et c’est là qu’ils ont créé le EHT (Event Horizon Telescope). Ce n’est pas un nouveau télescope, mais un protocole d’utilisation d’un réseau de neuf télescopes existants répartis un peu partout sur la planète, y compris au Groenland et en Antarctique. Son diamètre virtuel définissant sa capacité de résolution est de près de 15000 km.

w453-81281-ehtimagehighres

Une première session photo s’est déroulée en avril 2017 et les résultats sont à l’étape du traitement qui pourrait se terminer d’ici la fin de l’année 2018. Ce sont des pétaoctets de données à traiter avec des difficultés énormes, d’où le délai entre la prise photo et le résultat final.

Demain, quelques questions – réponses sur le sujet.

Verra-t-on un trou noir en 2018 ? (2)

Cet article fait suite à celui d’hier.

En résumé, un trou noir, c’est un point de l’espace infiniment petit et dans lequel la matière entassée dedans est devenue infiniment dense. Alors pour voir un point infiniment petit… noir… et très éloigné, on peut se demander si les astronomes ne sont pas tombés sur la tête !

Je vais donc introduire un autre concept qu’il faut connaitre provenant de cet hirsute personnage, mais un peu plus génial que moi, Albert Einstein. Il y a 103 ans, sa théorie de la relativité générale nous apprenait que l’espace-temps se déforme lorsqu’il y a de la matière. Et plus cette matière est dense, plus l’espace se déforme.

images.jpeg

L’image classique est celle du trampoline avec une boule de quilles au centre. Remplacez la boule de quilles par une boule d’or, puis par une boule d’uranium, plus la matière est massive, plus le trampoline s’enfonce autour de l’objet. Placez-y maintenant un trou noir, le trampoline se déforme tellement que sa trame devient un puits sans fond. Ainsi, autour d’un trou noir, la trame d’espace-temps se creuse à l’infini.

 

Ce puits attire donc les objets environnants, mais également tout ce qui s’en approche trop, lumière incluse. Ce n’est pas le trou noir qui attire la lumière, c’est l’espace qui a pris la forme d’un entonnoir. La lumière ne fait que suivre la géométrie de cet espace qui plonge sans fin. On dit qu’elle suit la géodésique de l’espace-temps.

main-qimg-df1f553f2f2f5a087c134596027b59b9.png

Si la lumière passe trop près, sa géodésique va l’amener inexorablement dans le puits. Si la lumière passe plus loin, l’espace-temps n’est pas suffisant déformé pour que la géodésique l’amène dans le puits. On comprend donc qu’il y a une limite entre le « juste un peu trop près, je tombe » et le « juste assez loin, je m’en sors ».

Sous cette limite, la lumière est piégée par le puits spatiotemporel. Au-delà, elle parvient à poursuivre sa trajectoire. Puisque le puits gravitationnel est tridimensionnel (sa déformation se crée dans les 3 dimensions d’espace), la limite est également tridimensionnelle. Elle prend donc l’apparence d’une sphère. Et puisque toute lumière passant sous cette limite est irrémédiablement piégée dans le puits, cette sphère ne peut émettre aucune lumière. Elle est donc parfaitement noire. On a l’impression que le trou noir a une bonne dimension puisqu’on voit une grosse sphère noire. Cependant, le trou noir reste un point infinitésimalement petit. La sphère noire autour du trou noir est simplement un effet créé par le trou noir, ce n’est pas le trou noir. Cet effet visuel ne contient rien, ni matière, ni lumière, sauf en son point central infiniment petit. Cependant, on a l’impression de voir le trou noir.

lin_2048.png.jpeg

La surface de cette sphère parfaitement noire se nomme l’horizon des événements du trou noir. Plus le trou noir sera massif, plus cet horizon gonflera, puisque l’espace déformé s’agrandit de plus en plus. On a l’impression de voir le trou noir grossir. C’est toujours l’horizon des événements qui grossit, pas le trou noir qui reste toujours, peu importe la masse engloutie, un point infiniment petit.

Donc, mon titre est un peu racoleur puisqu’on ne peut voir que l’horizon des événements d’un trou noir, pas le trou noir comme tel.

trou-noir-bleu

Toutefois, les astronomes eux-mêmes parlent de voir un trou noir. Vous pourrez donc corriger leur abus de langage la prochaine fois que vous croiserez un astronome au supermarché. « Tut, tut, tut ! horizon des événements mon ti-noir ! Tu ne me passeras pas un horizon pour un trou ! »

Bon, maintenant on sait qu’on peut admirer l’effet d’un trou noir sur l’espace qui l’entoure, ça ressemble à une sphère toute noire, ça s’appelle un horizon des événements, ça peut donc s’observer.

Demain, on verra comment s’y prendre pour voir des horizons des événements qui sont passablement petits. Et les trous noirs supermassifs alors ? On aurait probablement plus de chance avec ceux-là.

1*j7wFYXnbJEs4LrTBL1Zdfw

Verra-t-on un trou noir en 2018 ? (1)

Est-ce que nous pourrons voir un trou noir très bientôt ?

Évidemment, la question aurait de quoi faire rire. Puisque le fond du cosmos est noir, regarder un trou noir sur un fond noir, c’est comme observer un corbeau dans un placard. Pourtant, il est possible de voir ce à quoi un trou noir ressemble en regardant ses effets sur son environnement.

Afin de répondre à la question initiale, j’aurai besoin d’expliquer succinctement différents concepts que je distribuerai dans des articles distincts.

Le premier article sera donc consacré à rappeler comment se forme un trou noir afin de comprendre sa nature.

Une étoile est un délicat équilibre entre deux forces antagonistes. Tout d’abord, une étoile, c’est une bombe nucléaire. La pression engendrée par la fusion nucléaire tend donc à disperser les constituants de l’étoile comme le fait n’importe quelle bombe nucléaire. Toutefois, puisqu’une étoile est aussi un agrégat important de matière, la gravitation retient la matière éjectable en la concentrant au centre de l’astre, ce qui maintient l’étoile en une sphère plutôt stable.

Une étoile est donc une sorte de balance à ressort qui retient le poids déposé sur son plateau en le repoussant jusqu’à un équilibre entre les deux.

resize.jpeg

Formation d’une étoile à neutrons

Cependant, le carburant nucléaire venant en fin de compte à manquer — et cela arrive d’autant plus rapidement que l’étoile est obèse — la pression des explosions nucléaires ne suffit plus à contrebalancer la force gravitationnelle qui comprime l’étoile. De ce combat singulier perdu d’avance, l’étoile finira par imploser sous son propre poids. Si elle possède suffisamment de matière, l’implosion réussira à vaincre les autres forces répulsives possibles dans la matière. Les électrons deviendront incapables de se repousser mutuellement (principe d’exclusion de Pauli) et finiront par s’écraser sur les noyaux des atomes. Ce faisant, les électrons fusionneront avec les protons du noyau pour former des neutrons. On obtient ainsi une étoile d’une densité extrême dont son cœur est entièrement composé de neutrons. Tous ces neutrons sont comprimés dans une sphère de 20 à 40 km de diamètre pour l’équivalent en poids d’une étoile de 1,4 à 3,2 fois la masse de notre Soleil. C’est dire comment la densité de la matière est importante ! Mais une étoile à neutrons n’est pas encore un trou noir.

Trop de matière pour résister

Si l’étoile à neutrons possède une masse supérieure à 3,2 fois celle de notre Soleil, ces particules neutres formant une espèce de noyau atomique géant seront elles aussi incapables de résister à la force gravitationnelle. Les quarks composant les neutrons atteindront leur limite de résistance et flancheront à leur tour.

8230235118_ae689ff1db_k

Formation d’un trou noir stellaire

À cette étape, il n’existe plus aucun autre mécanisme pouvant résister à la force gravitationnelle. La matière atteint alors sa limite d’existence et s’écrase en se concentrant un point infiniment petit. Le résultat est une singularité des équations de la relativité générale d’Einstein. Un point infiniment petit concentrant une masse de densité infiniment grande. Un trou noir est né.

Ouais, la physique n’aime pas trop les infinis et ces deux infinis du trou noir signifient qu’on a un « trou » dans notre théorie. Un trou noir de connaissances liées aux trous noirs qu’on ne parvient pas à éclaircir. Ironique, n’est-ce pas ? Cette formation des trous noirs se rapporte aux trous noirs d’origine stellaire, c’est-à-dire qu’une étoile est à l’origine du trou noir. Il atteint des masses maximales aux alentours de 14 fois celle de notre Soleil.

messier_106_multifrequence_hubble_galex_chandra_by_damylion-d7qoy0k

Trou noir galactique (supermassif)

Il existe aussi des trous noirs galactiques. Ce sont des trous noirs tapis au cœur de la plupart des galaxies. Leur origine est controversée, mais il est certain qu’ils ont cru en avalant de la matière environnante et par coalescence avec d’autres trous noirs. Le record est détenu par le trou noir supermassif de la galaxie NGC 4889 qui aurait un petit 21 milliards de fois la masse de notre soleil !

La Voie lactée, notre Galaxie, cache également un trou noir supermassif en son sein. Il deviendra important pour la suite de cet article. Toutefois, sa dimension reste modeste. Il a la taille plutôt fine à comparer à bien d’autres trous noirs en ne pesant que 4 millions de fois la masse de notre Soleil !

Dans le prochain article, j’expliquerai simplement ce qu’on appelle l’horizon des événements d’un trou noir. Cette notion est essentielle pour comprendre comment on peut observer un trou noir.

Je vous donne rendez-vous demain pour la suite de ce passionnant feuilleton et vous encourage entretemps à poser vos questions sous forme de commentaire.

À bientôt.

Défauts inhérents à la téléportation

En physique, on considère que l’information est soumise aux lois de la théorie quantique. Elle est donc soumise à un principe fondamental de cette théorie qui est l’incertitude.

Pour rappeler ce qu’est le principe d’incertitude — ou d’indétermination — de Heisenberg, il stipule qu’il est impossible de connaitre avec une précision absolue deux propriétés complémentaires d’un même système quantique comme, par exemple, la vitesse et la position. Et quand j’écris impossible, ce n’est pas une figure de style, c’est une vérité absolue et incontournable.

5ff908d9ec_109424_photon-intrication-iqoqi-vienna-austrian-academy-of-sciences

Il est donc impossible de cloner une particule élémentaire à cause de cette imprécision systémique. On peut la copier avec un certain degré de précision qui ne sera jamais parfait.

Ce concept fait en sorte que si un jour vous étiez téléporté, votre copie ne serait pas un clone de vous-même, mais une copie quelconque ayant la fiabilité relative à la précision des mesures que le système de téléportation aurait pu prendre de tous vos constituants.

L’autre problème de la téléportation est le concept de la destruction de l’original. On imagine souvent la téléportation comme un système de transport. C’est totalement faux. Les corps ne voyagent pas d’un endroit à un autre.

640px-Military_laser_experiment.jpg

Les informations de chacune de vos particules composant votre corps sont lues par un scanner qui les détruit durant ce processus. Le système emmagasine les informations pour ensuite les transporter d’un point à un autre par un moyen classique de transmission d’informations pour ensuite reconstituer un corps à destination à partir de la matière environnante.

Les informations de chacun de vos plus petits constituants sont donc copiées plus ou moins précisément, mais jamais totalement ni parfaitement. Imaginez alors la téléportation comme une tentative de reconstitution d’un original à partir d’une photocopie.

Tout le monde a déjà photocopié une photocopie d’une photocopie avec le résultat qu’on connait. La téléportation nous assure qu’il ne pourra jamais en être autrement. Jamais un original ne restera un parfait original une fois la téléportation effectuée, même avec le plus parfait des systèmes mis en place.

7784147744_chris-pine-alias-le-capitaine-kirk-dans-star-trek-sans-limites

Alors, cessez de fantasmer sur le capitaine Kirk. Avoir été téléporté un nombre aussi impressionnant de fois, aujourd’hui vous ressembleriez probablement plus à un blob qu’à un humain.

http---i.huffpost.com-gen-1349204-images-n-BLOBFISH-628x314.jpg

Photon noir

Le CERN reprend ses activités, mais pas avec le LHC, avec le SPS. Bon, d’accord, je vais continuer en français. Le Centre européen pour la recherche nucléaire recommence ses expériences en utilisant le Super Synchrotron à Protons, un accélérateur circulaire plus petit que le fameux Large Hadron Collider utilisé dans la traque du boson de Higgs.

Cette fois-ci, les scientifiques du CERN cherchent des traces du photon noir, une particule hypothétique qui serait responsable d’interactions entre la matière ordinaire et la matière noire. Cette expérience est nommée par le sigle NA64.

Messier-81.jpg

D’après la théorie actuelle, l’Univers serait composé de 15 % de matière telle qu’on la connait et de 85 % de matière dite noire puisqu’elle est invisible, n’interagissant pas avec les photons. Cette fameuse matière noire permet de consolider les galaxies qui, sinon, se disloqueraient tellement leur vitesse de rotation est grande. Mais grâce à ce surplus de masse, elles forment leurs belles spirales sans que leurs étoiles s’éparpillent.

Seules des observations gravitationnelles de ce genre, ainsi que les effets de lentilles gravitationnelles nous laissent croire que la matière noire existe réellement. Toutefois, elle n’est jamais apparue dans les expériences au CERN ou ailleurs. On pense être en mesure de confirmer son existence en s’attaquant à son transmetteur de force qui serait un type de photon différent des grains de lumière que l’on connait, qui n’émet aucune lumière (onde électromagnétique) et qui par conséquent est invisible, de là son qualificatif «noir».

overview-na64.jpg

Tout ceci n’est qu’hypothétique, mais si on ne parvient pas à découvrir ce photon noir et d’y associer une cinquième force, la théorie de l’existence de la matière noire va prendre du plomb dans l’aile. S’ensuivrait une remise en question de la théorie de la gravitation énoncée par Einstein en 1915, sa fameuse relativité générale.

Puisque cette théorie n’a jamais été prise en défaut, dans aucune expérience, soit elle est juste et la matière noire existe réellement, soit la matière noire n’existe pas et la relativité générale est fausse malgré nos résultats expérimentaux actuels qui atteignent des niveaux de précision extrêmes.

rcs2_03727-132623-hst-1280x865.jpg

Le questionnement est majeur puisqu’il touche à 85 % du contenu de l’Univers en fait de matière ou à l’avènement d’une théorie de la gravitation interagissant différemment aux petites et aux distances moyennes et grandes, c’est-à-dire de la dimension des galaxies et plus encore.

On a toutes les preuves que nos théories coincent quelque part, pourtant l’Univers a très bien su dissimuler la façon dont il fonctionne. Présumer l’existence du photon noir et de sa matière noire est une tentative théorique qui nous permettrait de nous dépêtrer de ce bourbier dans lequel la physique des particules et de la gravitation est enfoncée depuis plus de 85 ans.

Fritz-Zwicky-at-the-International-Astronomical-Union-meeting-in-Brighton-England-in.png

Oui, déjà en 1933, un astronome du nom de Fritz Zwicky avait présumé de l’existence d’une matière invisible en mesurant la vitesse de rotation des galaxies. Ce dernier s’est mis la communauté des astronomes à dos lorsqu’il les a tous traités de «bâtards, peu importe dans quel sens on les regarde», mais il avait raison puisqu’ils s’étaient alors totalement désintéressés de ses résultats d’observation qui jetaient un très lourd pavé dans leur mare à canards.

Mais eux qui voyaient Zwicky comme leur vilain petit canard ont dû admettre, bien plus tard, malheureusement, qu’il avait parfaitement raison. Un scientifique de plus à rejoindre le plateau de la balance des génies désavoués qui ont osé dire différemment de la majorité, voire de la totalité des gens de leur profession.