Quand les physiciens s’excitent

ANITA est un instrument scientifique installé en Antarctique destiné à détecter des particules provenant des rayons cosmiques. Il est spécifiquement conçu pour chasser des rayonnements spatiaux extra-atmosphériques. La communauté des physiciens spécialisés dans les hautes énergies, dont celles concernant les neutrinos, fut prise d’une grande excitation quand l’instrument a détecté des particules qui ont semblé provenir de la terre plutôt que de l’espace. Puisque les rayonnements connus ne devraient pas rebondir, les scientifiques ont commencé à se demander si ces faisceaux mystérieux sont faits de particules inconnues jusqu’à présent, donc en dehors du modèle standard.

DSC_0188.jpg

ANITA

Depuis les premières observations en 2016, les scientifiques ont émis plusieurs hypothèses, dont celles des neutrinos stériles ou d’une distribution atypique de matière noire au sein de la Terre. Cependant, des hypothèses plus conventionnelles n’étaient pas toutes écartées pour autant.

Cela vient de changer. Un récent article scientifique (26 septembre 2018) provenant du Penn State University vient de montrer les données colligées des deux détecteurs de particules installés en Antarctique, ANITA et Ice Cube et leurs conclusions ont fait sursauter l’ensemble de la communauté scientifique. Si leur conclusion est valide, il n’y aurait qu’une seule chance sur 3,5 millions que les particules détectées par les deux appareils fassent partie du bestiaire du modèle standard des particules fondamentales actuellement accepté. C’est un niveau de confiance valant entre 5,8 et 7 sigma en fonction des calculs choisis, 5 étant le minimum pour confirmer une nouvelle découverte.

aHR0cDovL3d3dy5saXZlc2NpZW5jZS5jb20vaW1hZ2VzL2kvMDAwLzA5Ny80NzAvb3JpZ2luYWwvbmV1dHJpbm8tbWFzcy1zcGVjaWVzLmpwZz8xNTEzOTA0MTg0.jpeg

Ice Cube

Les deux équipes de chercheurs ignorent toujours si ces particules sont l’une de celles actuellement prédites par des théories alternatives ou complémentaires. Quoi qu’il en soit, cette découverte était grandement attendue puisque le modèle standard a toujours été considéré comme une œuvre incomplète du fait qu’il ne dit absolument rien sur la gravitation ni sur la matière noire ni sur l’énergie noire, des phénomènes observables qu’on ne peut laisser de côté.

MzA4OTIzOQ.jpeg

Simulation du réseau de détecteurs sous-glaciaire de Ice Cube

Mais pourquoi ces détections n’ont-elles lieu qu’en Antarctique alors qu’il existe tout un tas de détecteurs ailleurs dans le monde ? Les rayons cosmiques moins freinés par le champ électromagnétique de la Terre à cet endroit transportent des énergies impossibles à générer avec des appareils sur Terre et même par le plus puissant d’entre eux, le LHC. En analysant les comportements de ces particules cosmiques hyper énergétiques, on accède à tout un nouveau pan de la physique. Pour l’instant, le mystère plane sur la nature précise de ces particules.

WebBanner_ICL_Aurora.jpg

Pour ma part, je reste un peu sceptique. Les Américains nous ont prouvé avec l’expérience 2MASS qu’ils peuvent rapidement tirer des conclusions infondées. C’est comme s’ils étaient frustrés que les spots des découvertes scientifiques ne les illuminent plus et ils les recherchent à tout prix. Ils n’ont qu’à demander à leur gouvernement de mettre moins d’argent dans la guerre et plus en recherche. Connaissant leur président, ce serait chose facile, non ?

Antigravitation — 3 : La solution

Dans les précédents articles, j’ai expliqué ce qu’était véritablement l’antigravitation et ensuite j’ai testé l’hypothèse de l’usage d’antimatière pour en créer.

Cet article vous explique comment concevoir un vaisseau spatial mu par des forces antigravitationnelles à partir d’un concept abordé à la fin du deuxième article, la relativité.

Jouer sur la relativité du temps

Prenons comme référence temporelle celle d’une personne observant un objet volant fixe au-dessus de sa tête qui se maintient dans les airs. La vitesse relative entre l’individu et le vaisseau étant nulle, le temps s’écoule de façon identique, le vaisseau n’accumule aucune différence de temps.

Créer cette relativité temporelle

Maintenant, faisons osciller très rapidement le vaisseau grâce à une forte tension électrique appliquée à la carcasse qui l’amène à entrer en résonance à très haute fréquence. Ce mouvement alternatif est transmis à tout ce qui se trouve à bord, passagers compris. L’engin crée une relativité temporelle non nulle par rapport à l’observateur au sol ainsi que par rapport à l’espace environnant le vaisseau puisqu’il existe maintenant une vitesse relative non nulle entre l’intérieur et l’extérieur du vaisseau.

Créer l’antigravité

Si on regarde la forme de la trame spatiotemporelle qu’engendre cette oscillation continue, l’espace-temps extérieur n’est pas affecté, mais il en va tout autrement pour la trame d’espace-temps du vaisseau et de ses occupants. Ces oscillations créent des divergences dans la trame d’espace-temps en étirant le temps à l’intérieur du vaisseau (facteur de Lorenz). Mais si le temps s’étire, la trame d’espace-temps est donc déformée. Une bosse se crée dans la trame d’espace-temps là où le vaisseau se trouve. Une force antigravitationnelle voit le jour et celle-ci repousse les éléments externes au vaisseau dont la Terre. Si cette force repousse la Terre autant que la Terre l’attire, l’objet reste en position immobile au-dessus du sol.

Commandes de vol

Pour s’élever davantage, il suffit de faire osciller le vaisseau à plus forte fréquence ou à plus forte amplitude ou les deux à la fois. Pour descendre, on fait l’inverse. Pour les déplacements latéraux, on applique des tensions électriques différentes à des endroits précis de la carlingue pour engendrer une bosse spatiotemporelle asymétrique le repoussant dans la direction désirée.

Ainsi, non seulement le vaisseau parvient à compenser la gravitation par la création d’une force réellement antigravitationnelle, mais de plus il devient parfaitement manœuvrable.

caracas-venezuela-ovni-spherique-parque-8-janvier-2014.png

Un vaisseau luisant

Si les vitesses d’oscillation de l’engin se rapprochent des fréquences de la lumière visible, on verrait le vaisseau luire d’une lumière variant de couleur en fonction des manœuvres appliquées au vaisseau. Ça ne vous rappelle pas plusieurs rapports d’observations d’ovnis ?

Défier (presque) toutes les lois de la physique

Si on fait fortement varier la vitesse d’oscillation, le vaisseau sera projeté a vitesse folle par rapport à son environnement. Pourtant, dans le vaisseau même, les passagers ne ressentiraient rien puisqu’ils restent parfaitement fixes par rapport à la carcasse du vaisseau, subissant la même relativité temporelle. Aucun facteur G démentiel à encaisser.

De cette façon, le vaisseau et ses passagers ne subissent aucun effet d’accélération, de décélération, d’inertie, de friction ou de mur du son. Le vaisseau se comporterait exactement comme des milliers sinon des millions de témoins l’ont rapporté. Il semblerait faire fi de toutes les lois de la physique. Il pourrait changer instantanément de direction et de vitesse sans affecter la santé des entités biologiques à son bord. Il s’élèverait à des accélérations folles sans effort apparent. Il disparaitrait en un clin d’œil en atteignant des vitesses démentielles par rapport au sol.

Une application adéquate d’une loi physique trop négligée

Et pourtant, c’est bien grâce à la physique, à la physique relativiste, qu’un objet lourd parviendrait à voler sans faire entrer la sustentation aérienne en ligne de compte. Même en absence total d’air, l’objet volerait tout aussi bien. Ainsi, qu’il soit dans notre atmosphère ou au cœur de l’espace, quasiment aucune différence.

Les comportements en vol d’un tel type d’engin s’apparenteraient à tout ce qui est décrit sur le sujet, mais également à tout ce qui est décrié par toute la communauté scientifique.

ovni_02-1349c85

Nul besoin de faire entrer en ligne de compte des extraterrestres pour justifier la présence de ces ovnis antigravitationnels. Il suffuit simplement qu’une branche de l’humanité ait réussi à évoluer un peu plus rapidement que la nôtre.

Il reste toute la question des calculs, je sais. Mais une chose est certaine, la piste temporelle semble bien plus prometteuse que la piste matérielle pour faire fléchir à sa guise la trame spatiotemporelle afin d’engendrer de l’antigravitation malléable.

Antigravitation — 2 : La piste de l’antimatière

Le premier article sur le sujet de l’antigravitation s’attardait à définir sa véritable nature afin de la distinguer des autres forces capables de s’opposer à la gravitation sans dire pour autant que ce sont des forces antigravitationnelles.

Dans cet article, j’aborde les différences entre les forces afin de trouver une façon de concevoir de l’antigravitation. L’antimatière s’avèrerait-elle une solution réaliste ? Vous découvrirez la réponse à cette question.

antimatter

Force contre force

Un autre point très important à aborder avant de poursuivre est la grandeur de la force gravitationnelle à comparer aux autres forces de la Nature, l’électromagnétisme, par exemple.

Un petit exercice consiste à comparer la force attractive électrostatique entre un proton et un électron à la force gravitationnelle s’exerçant entre ces deux mêmes particules lorsque placés à même distance dans les deux cas.

La force électrostatique s’avérera 2,3 x 1039 fois plus grande que la force gravitationnelle. La force électrostatique est 2 300 000 000 000 000 000 000 000 000 000 000 000 000 de fois plus grande que la force gravitationnelle !

En résumé, la force gravitationnelle est si faible que la masse de la Terre entière ne suffit même pas à empêcher un tout petit aimant de soulever une clé. La puissance électromagnétique d’un minuscule aimant s’oppose ainsi aisément à la puissance gravitationnelle de toute la masse de la Terre!

Ce n’est pas de l’antigravitation

Dans l’exemple précédent, l’aimant n’est pas une force antigravitationnelle. C’est une force électromagnétique appliquée en direction opposée à la direction de la force gravitationnelle qui s’exerce sur la clé. Ce faisant, la force résultante déterminera si l’aimant ou la Terre aura le dessus l’un sur l’autre en soulevant la clé ou en la laissant gésir au sol.

T2L2661

Ce sont deux forces de nature totalement différentes dans leur essence, alors que l’antigravitation serait de nature identique à la gravitation, mais avec une composante répulsive plutôt qu’attractive. Ce serait comme pour  les forces électrostatiques qui possèdent les deux composantes. Des charges électriques identiques se repoussent et des charges électriques inverses s’attirent. On peut donc véritablement parler de forces électrostatiques et de forces antiélectrostatiques.

L’idée est de savoir si la gravitation possède ce même genre de double comportement et la réponse jusqu’à maintenant est non. Cependant, faut-il s’arrêter de chercher pour autant ?

L’antimatière est-elle une solution ?

Si la matière creuse l’espace-temps, il serait plausible que son opposé fasse le contraire et le surélève, créant par le fait même une force répulsive entre matière et antimatière, mais aussi entre l’antimatière et elle-même?

Neutrino_GIF_M1.gif

Cette hypothèse est encore débattue aujourd’hui quoique la très grande majorité des physiciens n’y croient pas. Pour eux, l’antimatière n’est qu’une histoire de charges électriques inverses et ne devrait pas influencer la manière dont sa masse se comporte avec l’espace-temps. Effectivement, on ne distingue aucune différence de masse entre un électron et un positron, ce qui laisse croire en une similarité gravitationelle comportementale.

Le problème est d’observer le phénomène. Puisque les forces électrostatiques sont 1039 fois plus grandes que les forces gravitationnelles, la faible répulsion antigravitationnelle, si elle existe, passe totalement inaperçue à côté des autres forces.

Mais une hypothèse non démontrée se fout des consensus. La physique n’a pas pour but de contenter les physiciens en leur donnant raison. Il se pourrait qu’ils aient tous tort et que l’antimatière engendre effectivement une force antigravitationnelle.

Antimatière et objets volants

Dans l’éventualité que l’antimatière engendre effectivement une force réellement antigravitationnelle, pourrait-on au moins s’en servir pour faire voler des engins?

Mark-Tomion-StarDrive-Device-1

En postulant qu’un atome d’antimatière engendre une force antigravitationnelle équivalente à la force gravitationnelle d’un atome de matière, il faudrait embarquer dans l’engin volant une quantité d’antimatière équivalente à la matière de toute la Terre pour compenser la gravitation terrestre.

L’antimatière semble donc une solution totalement irréaliste pour créer une forte antigravitation capable de se dégager de la gravitation terrestre.

Et si l’antigravitation était bien plus forte que la gravitation pour une masse semblable?

researchers-discover-angle-particle-which-is-both-matter-and-antimatter-at-the-same-time

Voilà une idée intéressante, mais ne s’appuyant sur rien. Pourquoi l’espace se courberait-il bien plus facilement en présence d’antimatière que de matière? La trame d’espace-temps serait extrêmement rigide à la présence de matière et totalement souple à celle de l’antimatière. Il faudrait trouver un mécanisme permettant de rendre l’espace-temps très souple en présence d’antimatière. Aucun indice ne semble pointer dans cette direction.

En fait, la preuve aurait probablement été trouvée puisque nous aurions découvert une différence de comportement entre un électron et un positron dans un même champ électromagnétique. Leurs déviations diffèreraient puisque la force antigravitationnelle du positron deviendrait non négligeable par rapport à sa force électromagnétique. Toutes les observations montrent une parfaite équivalence entre les deux particules. On peut donc réfuter une asymétrie forte entre les forces gravitationnelle et antigravitationnelle.

L’antigravitation forte existe-t-elle?

Nous ne connaissons rien pour l’instant qui parviendrait à surélever fortement le tissu de l’espace-temps. Je dirais, c’est normal puisque nous ignorons tout de la nature de cette trame. L’espace-temps reste un concept dont nous sommes encore loin de découvrir sa nature profonde. Si nous y parvenons un jour, nous serons plus à même de trouver un moyen de jouer sur sa trame pour lui faire produire des bosses répulsives plutôt que des creux attractifs.

Et si la solution se trouvait à portée de main ?

Pour ma part, j’aperçois un moyen. En injectant du temps dans la trame d’espace-temps, celle-ci se distendrait. Mais comment entrer du temps dans une sorte de seringue et l’insérer dans le tissu spatio-temporel? Voilà un joli défi technologique. Cependant, le temps regorge d’atouts non négligeables, il ne possède aucune masse, ainsi il devient facile d’en transporter autant qu’on veut à bord d’un objet volant. Reste à comprendre comment jouer avec le temps afin d’étirer la trame spatiale en sens inverse de la gravitation.

Dans le troisième article, j’abordera une façon d’y parvenir et ce faisant, de concevoir rien de moins que des… ovnis.

***** À suivre dans le prochain article*****


 

 

Antigravitation — 1 : Ce qu’elle est et n’est pas

Je consacre une série de trois articles à ce vaste sujet, car j’en ai long à dire. Ne ratez pas de les lire tous, des surprises de taille vous attendent.

Mais avant de savoir si l’antigravitation existe ou peut exister, il faut comprendre quelques principes de base dont ceux concernant évidemment la gravitation.

Détournement de sens

Dans la culture populaire, on mélange aisément plusieurs concepts physiques en donnant à des phénomènes des noms inappropriés et l’antigravitation souffre malheureusement de l’ignorance des gens qui utilisent ce terme à tort et à travers.

20-5-8-c2_corbeau_vol

Tout comme les oiseaux et les avions qui parviennent à combattre la gravitation en lui opposant une force ayant une composante verticale de sens opposé, ils ne créent pas une force antigravitationnelle pour autant.

T2L2661

L’aimant soulevant des clés ne développe pas une force antigravitationnelle. Un objet volant grâce à des forces électromagnétiques ne produit pas non plus une force antigravitationnelle.

RoswellSubSystems22

Toutes ces forces n’ont rien à voir avec la nature de la gravitation, même si elles parviennent à s’y opposer. Ce ne sont que des cas de forces très distinctes qui se compensent ou s’additionnent selon l’angle créé entre les différentes forces en présence (addition vectorielle).

forum_246960_1

Une force qui s’oppose à la gravitation ne s’appelle pas une force antigravitationnelle. Pour savoir ce qu’est réellement une force antigravitationnelle, il faut tout d’abord bien comprendre ce qu’est la force gravitationnelle.

La gravitation

Depuis les travaux d’Einstein publiés en 1915, on sait que la gravitation est une force attractive engendrée par la déformation de la trame d’espace-temps causée par les masses qui s’y trouvent. Les masses attirent à elles toutes autres masses parce que le tissu de l’espace-temps s’est déformé en conséquence. Bien qu’étant mieux ressentie à proximité d’un objet massif, cette force s’exerce sans limites de distance.

8cdde1c0e5_113466_gravitation-courbe-fotolia-the-lightwriter

De façon imagée, les masses creusent la structure de l’espace-temps, elles ne la surélèvent pas. Ce faisant, la force gravitationnelle est toujours de signe positif, indiquant une attraction des masses.

Son opposé, la véritable antigravitation

L’antigravitation serait le phénomène exactement opposé à celui-ci. Ainsi, quelque chose devrait être en mesure de surélever la trame de l’espace-temps afin de générer une force qui tendrait à éloigner les objets les uns des autres, générant une force gravitationnelle de signe négatif, répulsive, une antigravitation. Pour reprendre l’image de la trame, l’antigravitation génèrerait dans celle-ci des bosses plutôt que des creux. Les creux, font de la trame un attracteur. Les bosses créées par l’antigravitation en feraient un diffuseur, un disperseur des masses.

Trame-Masse

On sait maintenant ce qu’est la véritable antigravitation.

Dans le prochain article, il sera question de comparer la gravitation aux autres forces de la Nature afin de bien comprendre de quoi il en retourne. La piste de l’antimatière sera mise à l’épreuve.

***** À suivre demain *****

 

Dernières nouvelles du Higgs

Le prochain paragraphe testera votre capacité à résister aux coups sur la tête.

Le réputé boson de Higgs est une particule qui, comme tous les bosons, véhicule une force, obéit à la loi de Bose-Einstein et désobéit à celle de l’exclusion de Fermi. Son spin est un nombre entier, et permet aux trois bosons de jauge W± et Z0 d’acquérir une masse par brisure de symétrie.

Collision.png

Bon, là, êtes-vous bien assommés? Pas grave! Avant de parler des dernières nouvelles concernant cette damnée particule (goddamn particle, pas God particle), revoyons lentement quelques notions entourant cette pierre angulaire de notre théorie standard des particules.

Retour sur quelques principes

La matière, désignée sous le terme fermions, ne peut pas occuper des états quantiques identiques, c’est le principe d’exclusion de Fermi qui fait en sorte que les électrons, heureusement, ne se percutent pas.

Vous trouverez un petit résumé des particules élémentaires dans cet article.

En revanche, les bosons qu’on ne considère pas comme de la matière, mais comme des vecteurs de forces se foutent éperdument d’avoir des sosies. Ainsi, ils s’amusent parfois à tous se ressembler et se rassembler, ce qui permet d’obtenir une lumière cohérente (les lasers), de la superfluidité, de la superconductivité, ainsi que des champs comme les champs électriques, magnétiques et de Higgs.

maxresdefault-2

Les bosons ont un spin obligatoirement entier valant 0, 1 ou 2. Le boson de Higgs possède un spin de zéro, faisant du champ de Higgs un champ scalaire, c’est-à-dire sans orientation ni direction.

Champ scalaire, vous dites? Ça se mange des scalaires?

On a tous vu un champ magnétique grâce à une barre aimantée, une vitre et de la limaille de fer. La forme caractéristique des lignes du champ magnétique montre que celui-ci possède une orientation et une direction, c’est un champ vectoriel.

lumiere-solide-liquide-photons-superfluide

En revanche, la température dans une pièce est un champ scalaire semblable au champ de Higgs. À chaque point de la pièce, on peut mesurer une température comme on peut mesurer le champ de Higgs à chaque point d’un espace défini.

Désintégration

Le boson de Higgs est une particule évanescente. Elle se désintègre quasi instantanément pour former des fermions, plus particulièrement deux quarks bottom (b), dans 60 % des cas.

image-292894-860_poster_16x9-mijo-292894

Cette désintégration est si rapide que le boson de Higgs n’a jamais été lui-même aperçu. Au mieux, on avait entrevu les sous-produits de la désintégration des sous-produits de la désintégration du Higgs. La nouveauté est d’avoir pu directement voir les sous-produits immédiats qui viennent d’être confirmés par le CERN, six ans après la découverte du dernier boson à composer la théorie dite du modèle standard.

Gg_to_ttH

Cette nouvelle était attendue et n’apporte aucune surprise aux physiciens théoriques. Si leur théorie s’en voit renforcée, en revanche, elle n’entrouvre aucune brèche qui leur permettrait de pousser la physique des particules un peu plus loin. Le modèle standard tient bien la route alors qu’on sait pertinemment qu’il sera pris en défaut un jour ou l’autre. Il faudra donc chercher la faille ailleurs.

 

Ce boson n’a pas dit son dernier mot

La question fondamentale qui taraude les physiciens à propos du boson de Higgs et du champ de Higgs est de savoir pourquoi chaque particule élémentaire du modèle standard acquiert une masse distincte, voire aucune masse comme dans le cas du photon.

1a7c7c34e2_50034416_ce0085m-06.jpg

Pourquoi chaque particule réagit-elle différemment au champ de Higgs uniforme? Comment se joue cette interaction entre ce champ scalaire et les particules, cette affinité qu’on appelle le couplage, qui fait qu’elles obtiennent chacune une masse distincte et précise?

Certains pensent trouver la réponse dans la théorie de la supersymétrie (SuSy) qui permet l’existence de plusieurs bosons de spin 0 et donc des possibilités multiples de couplage. Ce n’est pas le premier exemple où la supersymétrie sauverait la logique comportementale de la physique. Malheureusement, aucune particule prévue par la supersymétrie n’a encore été détectée malgré des efforts immenses en ce sens, laissant fortement douter de son existence ailleurs que dans la tête des physiciens théoriciens.

Déboulonner la création spontanée d’univers parallèles

D’entrée de jeu, je vous avise que je ne remets pas en question dans cet article la possibilité d’existence d’univers parallèles, mais seulement de la façon dont parfois on envisage leur création.

Le concept d’univers parallèles à celui que l’on connait, le nôtre, est devenu sérieux dans la tête des physiciens avec les travaux du mathématicien Hugh Everett.

Il existe des tas de façons d’imaginer des univers parallèles, mais la plus populaire reste celle montrée à l’écran dans la série «Fringe». On parle d’un ou plusieurs univers presque en tout point semblables au nôtre à quelques exceptions près.

2893466-fringe-tv-series-tv___people-wallpapers

Par exemple, on imagine un autre univers semblable au nôtre, mais dans lequel les nazis auraient gagné la Seconde Guerre mondiale, ou encore un monde où John F. Kennedy n’aurait pas été assassiné. Ensuite, on extrapole une suite plausible.

Le problème se situe dans l’évolution de ces univers dans leur passé. Comment ces univers auraient-ils pu rester identiques au nôtre jusqu’à un point de divergence quelconque? Pourquoi ce point de divergence ne s’est-il pas produit bien avant?

Si on admet le principe de divergence, pourquoi se limiter à un seul point de séparation? Pourquoi pas mille, un million, un milliard, une infinité? Le concept d’un ou de plusieurs univers parallèles maintenus identiques au nôtre durant des milliards d’années et qui divergeraient tout à coup n’a donc aucun sens. C’est comme imaginer deux bonbonnes de gaz identiques où tous les atomes à l’intérieur se comporteraient de façon parfaitement identique à leur homologue durant des temps immémoriaux et que tout à coup l’un d’entre eux ne suivrait pas le tracé de son équivalent dans la seconde bonbonne.

marius-vieth8

On comprend facilement que les atomes formant des gaz possèdent des comportements aléatoires et chaotiques. Même si les deux bonbonnes et leur contenu partaient d’un moment où ils étaient parfaitement identiques, à la toute première fraction de seconde de leur évolution, plus aucune paire d’atomes homologues ne se retrouverait au même endroit à l’intérieur de leur bonbonne respective.

Imaginez maintenant tous les atomes de notre univers qui seraient capables d’une telle prouesse avec ceux d’un univers parallèle, et ce depuis le début de leur histoire commune, donc 13,8 milliards d’années. Si les univers parallèles existent, ils ne peuvent pas ressembler au nôtre à cause des divergences infinies qui se seraient produites dans le passé.

La physique quantique nous a montré que l’univers n’est pas déterministe. Ainsi, ce genre de tracé parallèle continu entre deux univers est impossible.

La riposte des scientifiques fut d’imaginer qu’un tout nouvel univers se crée spontanément au moment d’un choix. Si je tourne à gauche ou si je tourne à droite, ces deux possibilités créent la divergence qui engendre deux univers identiques en tout point, sauf que dans un cas, l’évolution se poursuivra avec mon premier choix et dans le deuxième univers ma vie prendra le second tournant.

multivers-physique-temps.jpg

Mais d’où proviendrait l’énergie nécessaire à créer ces tout nouveaux univers remplis soudainement de toute cette masse nouvelle (E = mc2) et déjà parfaitement ordonnés exactement comme le premier? Et qui, ou quoi, peut faire un choix qui engendre un nouvel univers? Seulement l’humain? Un primate a-t-il ce privilège? Et une souris? Une bactérie? Un brin d’ADN? Une molécule? Un atome?

Et lorsqu’un choix contient mille possibilités différentes, ça créerait mille univers? Et si le choix contient des milliards de possibilités, comme le choix des trajectoires possibles? Lorsque je tiens le volant de ma voiture, je choisis consciemment ou inconsciemment de le tourner légèrement, mais combien légèrement? Un peu, un peu plus, un peu moins, ma main peut prendre des positions infinies correspondant chacune à un choix différent qui créerait autant d’univers qu’il y a de positions possibles de ma main sur ce volant. Et là, je ne parle que d’une seule correction de trajectoire. Et quel est le temps de latence entre deux choix permettant ou non de créer un nouvel univers parallèle? Un siècle, un an, une journée, une seconde, une microseconde, une femtoseconde?

univers-paralleles

Penser que des univers parallèles se créent à partir d’un choix n’a aucun sens puisque c’est le concept même du choix et de ses différentes possibilités qui y sont rattachées qui n’a aucun sens.

On a mis au défi certains promoteurs de cette théorie. S’ils y croyaient vraiment, ça ne devrait pas les déranger de se suicider puisqu’ils existent dans une multitude d’autres univers. Étrangement, aucun n’a semblé vouloir y croire jusqu’à ce point.

La fourmi, la guêpe et l’intrication quantique

Hier soir, j’ai été voir le film de superhéros «Ant-man et la Guêpe» produit par Marvel. Si vous n’avez pas encore visionné le film, soyez sans crainte de poursuivre votre lecture, je ne dévoile aucun punch.

Depuis que cette entreprise opère dans le cinéma, elle porte un soin jaloux à ses scénarios en évitant de tomber dans les pièges de la facilité qui amènent inexorablement d’autres maisons du genre à concevoir des tissus d’incohérences et des collections d’âneries. Marvel sait raconter des histoires en emmêlant allègrement à travers leurs multiples films les aventures que vivent leurs différents personnages. L’ensemble de la filmographie crée une grande saga qu’on peut suivre du premier film jusqu’au dernier.

Ant-Man-et-la-Guêpe-e1530473865333-906x445.jpg

Bien entendu, Marvel maltraite, triture, torture la science dans tous les sens, mais leurs films se consacrent au divertissement, pas au documentaire. Nous devons donc être en mesure de les regarder pour ce qu’ils prétendent être et éviter de leur en vouloir pour les libéralités prises à l’endroit des formules des lois naturelles.

Dans le cas de l’homme-fourmi, un principe physique simple qui n’est pas respecté est la masse volumique. Pensez à un cube de 10 cm de côtés. Il possède un volume de 1000 cm3 et supposons qu’il pèse 1 kg. Maintenant, doublons ses dimensions. Les côtés mesurent 20 cm, le volume passe alors à 8000 cm3. Quant à son poids, il atteint 8 kg. En doublant des dimensions linéaires, les volumes ainsi que les masses deviennent 8 fois plus importants. Dans cet exemple, pour soutenir un homme dont ses dimensions ont été doublées, des jambes proportionnelles ne supporteraient jamais le poids. Le même raisonnement fonctionne également en sens inverse, ça explique pourquoi les pattes des fourmis semblent si fines à leurs dimensions, mais beaucoup trop minces pour rester efficaces lorsqu’on amplifie la taille de l’insecte.

ant-man-2-ant-man-et-la-guepe-gif-5b3e5e4e2b2b1.gif

Mais ce n’est pas très grave puisque c’est du divertissement et on aime bien voir des créatures, des personnages et des objets se faire réduire ou agrandir tout en conservant leurs propriétés intrinsèques. Mais quelle est la limite au rapetissement? Dans le film «Ant-man et la Guêpe», ils vont jusqu’à la limite théorique, celle des particules élémentaires, celle du vide quantique.

Aujourd’hui, dans nombre de films, on s’approprie certains pans de la physique quantique sans nécessairement la respecter, mais ce ne sont que des divertissements. À mon avis, il est grandement temps d’en parler au quotidien après être restée tapie dans les placards durant tout un siècle. Évidemment, les étrangetés de cette physique se prêtent bien à créer autour d’elles d’autres bizarreries moins véridiques, mais on demeure toujours dans le monde du divertissement.

Il y a quelques jours, j’ai traité du principe cosmologique des ponts Einstein-Rosen qui a été utilisé dans le film de Marvel, «Thor — Ragnarok». Vous pouvez le lire dans mon article intitulé «Pont Einstein-Rosen». Dans la production cinématographique mettant en vedette le couple d’insectes, Marvel exploite cette fois-ci le concept d’intrication quantique pour engendrer une connexion télépathique entre deux cerveaux. Le producteur effleure aussi l’aspect de délocalisation quantique avec le personnage du Fantôme.

bande-annnce-ant-man-guepe-65219-1200x675

Très récemment, j’abordais exactement le sujet de l’intrication dans un article intitulé «Intrication et télépathie». Pourtant, je n’avais aucune espèce d’idée du scénario du film «Ant-man et la Guêpe» lorsque je l’ai rédigé. C’est à croire que je possède une certaine forme d’intrication quantique télépathique avec Marvel! Qui sait, ça me rapproche peut-être d’un autre degré de Scarlett?

Vagues scélérates

Évitez de confondre une vague produite par un tsunami et une vague scélérate. Leurs processus de création ne se comparent en rien et on ne les retrouve pas du tout aux mêmes endroits.

Vous voguez en pleine mer, les vagues tout autour de votre navire paraissent normales. Tout à coup, l’horizon devant vous devient noir. Un mur d’eau semble se rapprocher de vous. De 20 à 30 mètres de hauteur, le record rapporté fait état d’un monstre de 33 mètres, cette vague apparait non seulement anormale par sa hauteur, mais aussi par sa forme.

Elle ne ressemble en rien à une houle que votre bateau parvient toujours à gravir pour redescendre de l’autre côté. Non, cette eau vous arrive dessus en formant une paroi presque verticale. Les chances de vous en sortir indemne se réduisent à néant, car votre navire est condamné à subir un terrible choc pour lequel il n’a jamais été conçu, peu importe sa grosseur.

Vague Scélérate - Vue d'artiste - Rogue Wave - Artist view

Les vagues scélérates constituèrent un mythe jusqu’au milieu du XXe siècle et elles furent acceptées comme étant réelles par les scientifiques durant les années 1990. Oui, ces derniers se retranchaient derrière leurs équations linéaires qui prédisaient l’émergence d’une vague de cette amplitude aux 10000 ans!

omae_135_3_031108_f008

Les choses changent le 1er janvier 1995 quand la plateforme pétrolière Draupner en mer du Nord enregistre la hauteur d’une vague venue la percuter à 25,6 mètres de hauteur. Pour qu’une vague soit appelée «scélérate», elle doit mesurer plus de 2,1 fois la hauteur significative Hs des vagues de l’endroit. Celle-ci correspondait à 2,37 fois cette hauteur et elle représentait la première preuve béton de l’existence de ces monstres incompréhensibles.

Aujourd’hui, les vagues scélérates avérées, les scientifiques se défendent d’avoir toujours cru les récits de ces capitaines chevronnés, mais ils tentent en réalité de faire disparaitre les preuves de leur ancien dédain lorsqu’ils les traitaient tous de menteurs et d’ivrognes tandis qu’eux-mêmes n’avaient jamais posé les pieds sur un navire en plein océan durant une tempête.

On a pensé détenir la cause de leur formation en analysant des vagues le long de la côte de l’Afrique du Sud. Le fort courant vers l’ouest associé à des vents opposés parviennent à créer des vagues de hauteur dépassant parfois la cote 2,1 Hs. Toutefois, les témoignages de vagues scélérates apparues très loin des courants marins ont mis à mal cette théorie reléguée depuis à un phénomène de diffraction.

CapBonne-Courant

Les vagues scélérates ne partagent pas toutes les mêmes caractéristiques. Hormis leur taille inhabituelle et leur forme quasi verticale, leur direction peut varier d’une vingtaine de degrés par rapport aux autres vagues. Elles peuvent aussi survenir par paquet de trois et sont alors appelées «les trois sœurs».

En anglais, ils utilisaient le terme «freak wave», mais cette désignation semble vouloir disparaitre au profit de la «rogue wave».

Ce type de vague crée des pressions énormes sur les structures métalliques des navires marchands et de croisière, dix fois plus importantes que celles prises en considération lors de leur conception. C’est donc dire qu’aucun bateau ne leur est invincible. Les vagues frappent de plein fouet le château des plus grands navires, brisant leurs vitres et les commandes de navigation. On estime la perte d’un cargo par année due à ces vagues apparues de nulle part.

Mais comment se forment-elles? Une réponse a surgi d’un tout autre domaine d’expertise, comme pour la résolution de plusieurs énigmes scientifiques. Les vagues auraient un comportement linéaire bien connu et maitrisé, mais elles auraient également un comportement non linéaire décrit par l’équation de Schrödinger de la physique quantique.

ob_c98bf6_schrodingerequation1

Imaginez un train d’ondes, ce sont les vagues. Tout à coup, pour des raisons restées mystérieuses, l’une d’elles commence à pomper l’énergie de ses deux voisines, faisant baisser leur hauteur au profit de la sienne qui s’élève anormalement. Un mur d’eau vient de se créer devant vos yeux. On sait que ce processus existe, on ignore encore dans quelles circonstances il se déclenche.

Rajoutez à ce concept de pompage énergétique la probabilité de superposition lorsque deux trains de vagues de directions différentes interfèrent et vous obtenez des vagues dépassant largement les 2,1 Hs.

Les structures élevées des navires n’étant pas conçues pour résister à de fortes pressions, une vague scélérate peut faire couler n’importe quel navire en quelques minutes, comme cela survint au réputé insubmersible (un autre!) cargo allemand München le 12 décembre 1978 en Atlantique Nord.

Rhine_Forest-1_Port_of_Rotterdam_24-Feb-2006.jpg

Avec l’avènement des satellites radar, les vagues des océans du monde sont constamment mesurées et la fréquence des scélérates se situe bien au-delà de tout ce qu’on avait cru possible. Il n’est pas rare d’en trouver quelques-unes en train de se déchainer simultanément sur l’une ou sur plusieurs mers du monde.

L’ancienne estimation d’une seule vague scélérate par dix mille ans montre jusqu’à quel point les scientifiques peuvent parfois se tromper lourdement et ils devraient, du moins j’espère, gagner en humilité. Ça leur ferait un bien fou de croire aux humains leur racontant des expériences vécues et de prendre l’air en leur compagnie plutôt que de rester enterrés au fond de leur bureau à tripoter avec concupiscence leurs équations fétiches inadéquates, mais combien rassurantes!

Pont Einstein-Rosen

Chose promise, chose due. Voici la suite de l’article traitant d’intrication quantique.

Ne cherchez pas le pont Einstein-Rosen sur Google Maps, il ne traverse aucune rivière. Cependant, il traverse bien un espace entre deux lieux. Et quel espace!

Ces deux physiciens ont signé un article en 1935 alors que faisait toujours rage la polémique autour de la réalité de la physique quantique. À partir des équations de la relativité générale, ils montrèrent que certaines solutions créeraient un déchirement de l’espace-temps et une connexion possible entre deux feuillets distincts de l’espace-temps.

image-3

Le concept du trou de ver était né, un lien sous-jacent à travers deux points éloignés qui, si nous étions en mesure de l’emprunter, permettrait de court-circuiter le chemin normal. Ce raccourci spatio-temporel donnerait l’impression d’avoir franchi une grande distance en violant le sacro-saint principe de la vitesse limite dans le vide, mais il n’en est rien. Venant d’Einstein, rien de surprenant qu’il respecte son propre postulat.

Mais en quoi la physique quantique joue-t-elle maintenant dans ce principe astrophysique régi par la relativité générale? La physique de l’immensément petit a donné une façon de créer ce trou de ver entre deux endroits précis de l’espace et c’est grâce à l’intrication quantique.

1477053338

Intriquez une grande quantité de matière. Séparez ces particules en les plaçant à deux lieux de votre choix. On sait que l’intrication garde un lien fort entre ces éléments, peu importe la distance. Engendrez ensuite deux trous noirs en condensant la matière aux deux endroits. Voilà, un trou de ver est né, exactement là où vous le désiriez.

Si ce concept résout le problème de la création d’un trou de ver entre deux lieux distincts et prédéterminés, il reste cependant totalement infranchissable d’un côté vers l’autre puisque si on peut entrer dans un trou noir, on ne peut jamais en ressortir, soit en faisant demi-tour, soit en tentent d’emprunter celui situé droit devant.

maxresdefault-3

D’après le physicien théorique Leonard Susskind, professeur à l’université Stanford en Californie, il faut trouver quelque chose de plus élaboré, mais le principe de l’intrication quantique restera probablement une partie essentielle du processus qui permettra un jour d’engendrer un véritable pont Einstein-Rosen réellement franchissable.

7790673342_thor-et-brunce-banner-dans-thor-ragnarok

Dans le film Thor: Ragnarok, nos héros Thor et Hulk sont coincés à l’autre bout de l’Univers et doivent se rendre sans délai à Asgard. Bruce Banner reconnait un «pont Einstein-Rosen» et la bande de gros bras l’emprunte afin de traverser l’espace en un temps record. Les scripteurs ont eu l’intelligence de ne pas choisir deux trous noirs comme origines et débouchés de ce pont, desquels on ne peut échapper. Ils parlent plutôt d’un pont entre deux étoiles à neutrons.

agujero_negro 3.jpg

Je considère la construction de vrai pont Einstein-Rosen que nous pourrions un jour utiliser comme représentant l’ultime défi technologique de l’humain. Je crois sincèrement que si nous parvenons à continuer d’exister sans nous détruire, nous y arriverons et nous pourrons alors visiter une grande partie de notre Galaxie.

02899110b33a0040a7c5524d265e2c9b8fd7fa18_00.gif

Pour visiter le reste de notre Univers, les autres galaxies, on aura besoin d’un autre saut technologique, mais commençons par régler le cas du voyage intergalactique. Notre terrain de jeu viendra de s’agrandir bien suffisamment pour nous occuper pendant un bon milliard d’années.

Intrication et télépathie

En français, intrication signifie un enchevêtrement de choses, un fouillis complexe et difficile à démêler. En physique quantique, l’intrication est un état particulier que peuvent prendre des particules et elle représente certainement l’une des plus étonnantes particularités contre-intuitives de cette physique de l’élémentaire.

depositphotos_166179300-stock-video-quantum-entanglement-signals-in-the

Prenons deux électrons et faisons-les interagir de telle sorte qu’une des particularités de l’un soit liée à celle de l’autre. C’est plutôt facile à obtenir. Deux électrons sur une même orbitale «s» autour d’un noyau ne peuvent pas posséder un même moment cinétique orbital (spin) à cause du principe d’exclusion de Pauli.

Spini

Si le spin du premier va dans un certain sens, celui du second sera nécessairement dans le sens contraire. Ces deux électrons sont maintenant intriqués l’un à l’autre et tout changement du spin de l’un va nécessairement entrainer le changement du spin de l’autre. C’est normal, direz-vous, puisqu’ils partagent la même orbitale et vous vous souvenez que le principe d’exclusion de Pauli le défend.

Jusqu’ici, rien de compliqué à comprendre. Mais voilà où la physique quantique devient franchement bizarre. Séparons les deux électrons et envoyons-les à très grande distance l’un de l’autre, la distance que vous voulez. Faites-les s’associer à des noyaux, créez des liens chimiques, bref donnez-leur une existence propre.

ob_bb2cea_etanglement-quantique.jpg

Puis mesurez le spin du premier électron. Vous saurez alors que le spin du second sera nécessairement son inverse, peu importe là où il se retrouvera par rapport au premier. Ils sont à jamais intimement intriqués.

Il ne faut pas confondre l’intrication avec la complémentarité. Si vous possédez une paire de gants et que vous envoyez séparément dans des valises n’importe où dans le monde, si vous en ouvrez une et découvrez le gant gauche, vous saurez immédiatement que l’autre est celui de droite. Mais l’intrication est totalement autre chose puisqu’elle permet de changer un gant pour son contraire et l’autre se transformera lui aussi et instantanément, indépendamment de la distance entre les deux.

conf-einstein-relativite

Cela semble défier la vitesse limite de la lumière et Einstein a bien tenté de trouver une cause cachée à cet «effet fantomatique à distance», disait-il. Le grand homme avait tort. Des expériences menées après sa mort, dont celle du physicien français Alain Aspect en 1983, ont prouvé qu’il n’existait aucune cause cachée. L’intrication quantique existe bel et bien.

ASP00008-Alain-Aspect

Comment peut-on comprendre ce phénomène franchement bizarre? Une façon de donner à l’esprit une explication rationnelle est de se remémorer le fait qu’une particule élémentaire est également une onde. Celle-ci n’a aucune limite de distance puisqu’elle n’est pas localisée dans un lieu précis. Les deux électrons intriqués partagent cette même onde. En transformant les propriétés de l’un d’eux, l’autre ne peut faire autrement que de s’y conformer et de modifier sa même propriété pour que l’onde globale reste inchangée (fonction d’onde).

Cet effet quantique pourrait avoir une manifestation macroscopique. On sait qu’une mère et son bébé ont partagé une intimité qui aurait possiblement permis d’intriquer de la matière d’un à l’autre. Une fois l’intrication existante, des changements d’état chez l’un peuvent se transmettre instantanément chez l’autre, engendrant une transformation partagée. Cette intrication ne serait pas limitée aux mères et à leur enfant, mais à toute interaction humaine. Et voilà comment une physique moderne pourrait expliquer certains phénomènes ésotériques que cette même science décriait comme étant du pur charlatanisme.

télépathie.png

Toutefois, aucune preuve formelle n’a encore été apportée à cet effet, mais l’intrication quantique a donné aux physiciens une bonne raison de cesser de rire des théories autrefois considérées comme totalement absurdes puisqu’elles auraient violées toutes les lois de la Nature, oubliant au passage que cette dernière ne se pliait pas à leurs désirs et à leurs croyances. Toutefois, la télépathie ne serait pas une transmission entre deux esprits comme on est habitué à se l’imaginer, mais à un partage préexistant d’états quantiques.

Dans le prochain article, j’aborderai une théorie étonnante découlant de ce principe.