L’angle de Planck

Si vous ne connaissez pas les dimensions de Planck, sachez qu’elles sont connues depuis 120 ans déjà. Ce sont les dimensions extrêmes de notre Univers. Dans le cas des longueurs de distance et de temps, elles valent environ 10-35 mètre et 10-44 seconde.

Il est impossible de fragmenter ces valeurs, elles sont les atomes (éléments insécables) de notre univers. De là à imaginer que notre univers est discontinu, il y a un pas à franchir qui pour moi devient évident, mais pas pour une majorité de physiciens qui croient encore, malgré cela, que le temps coule sans faire de bonds et que l’espace n’est pas atomisé.

Cependant, pour rendre compatibles nos deux piliers actuels de la physique, la physique quantique et la relativité, les théories basées sur la discontinuité du temps et de l’espace semblent prometteuses. Certains travaux de physique théorique actuels voient l’espace composé de microscopiques tétraèdres de longueur équivalente à celle de Planck, soit 10-35 m.

Je me suis donc posé la question suivante. Si l’espace est discret, discontinu, pourquoi n’en serait-il pas autant des angles de rotation ? Pourquoi tous les angles seraient-ils permis ? L’Univers est discontinu ou ne l’est pas et si c’est le cas, alors les angles le sont également.

Mais je ne trouve rien sur ce sujet. Il semblerait que personne n’a pris la peine de se poser la question. Rien, nada, le vide, non le néant. Pourtant, je ne peux concevoir une longueur minimale pouvant tourner librement de façon totalement continue, sans limite minimale.

Comment peut-on concrètement représenter cet angle de Planck ? Celui-ci aurait le même effet que nos convertisseurs du numérique à analogique actuels. Oui, ces engins qui transforment les bits de nos CD en onde sinusoïdale qu’on peut entendre. En fonction de la résolution de ces convertisseurs, les ondes restituées possèdent plus ou moins de paliers, mais aucune n’est totalement continue. Les sinusoïdes ont des marches, mais nos oreilles ne peuvent les percevoir si elles sont minuscules.

PaliersPlus

L’angle de Planck causerait le même effet dans les ondes électromagnétiques. Cependant, à cause de sa petitesse, il nous est très difficile de distinguer des paliers dans la lumière reçue ou émise. Par l’observation, il est cependant possible de déterminer sa limite supérieure, mais seule une théorie nous permettrait d’en donner une valeur précise.

Pour générer des ondes à paliers, le rotateur doit tourner en saccade, avancer coche par coche, comme une horloge dont la trotteuse marque chaque seconde d’un tic caractéristique.

Il existe la notion de « temps de Planck » qui se rapporte au temps que prend la plus petite longueur d’onde possible à parcourir son cycle, sa période. Ce temps déterminé par les constantes fondamentales vaut 5,391 x 10-44 seconde. Mais ce temps représente l’ensemble du temps passé pour faire une rotation complète, l’équivalent de la minute pour une trotteuse, alors que moi je cherche l’équivalent de la seconde. Pour une trotteuse, son angle minimal vaut 6 degrés, puisque 360°/60 s = 6°/s.

Il existerait donc un temps plus petit que le temps de Planck, c’est le temps de chaque palier que possède une onde. En considérant le pire, soit un seul palier par valeur positive et négative et les deux paliers à zéro, on doit diviser le temps de Planck par 4 pour trouver le temps de chacun des paliers d’un cycle.

PaliersMin

En revanche, plusieurs paliers divisent d’autant la plus petite division temporelle. Il est possible que le temps de Planck fasse qu’il n’existe qu’un seul palier par demi-cycle et qu’ainsi la résolution angulaire, l’angle de Planck, à cette hyperfréquence soit égale à 90°. L’angle de Planck déterminerait le type de maillage spatiotemporel. S’il vaut 90°, l’espace-temps serait une construction formée de cubes empilés.

Cependant, une de nos théories actuelles de la gravitation quantique fait intervenir des mailles spatiotemporelles de la forme d’un tétraèdre. Si cette description est exacte, l’angle de Planck serait plutôt équivalent à 30° et il existerait donc quatre paliers de valeurs distinctes (en incluant le zéro) par demi-cycle plutôt que deux.

Quels seraient les impacts d’un angle de rotation de Planck de 30° sur notre compréhension actuelle de l’univers ?

L’accélération de l’expansion de l’univers pourrait ainsi n’être qu’un artéfact et ce n’est pas rien. Les galaxies lointaines apparaitraient plus éloignées que la réalité. Ainsi, nos estimations actuelles de l’énergie sombre seraient erronées et même peut-être totalement fausses. Le destin de notre univers en serait chamboulé puisque le Big Rip ne surviendrait pas.

 Ce serait une excellente nouvelle puisque selon la théorie actuelle, tous nos atomes finiront écartelés, déchirés par cette énergie sombre délétère.

Je mise sur un angle de Planck non nul qui pourrait peut-être sauver notre univers d’une mort horrible que nous promet actuellement ce que nous appelons l’énergie sombre, un terme signifiant que nous ignorons complètement sa nature.

Un angle de Planck valant 30° réduirait à néant l’obligation de recourir au principe d’une énergie sombre répulsive pour expliquer ce que l’on observe. Surtout, il redéfinirait les dimensions et le destin de l’Univers.

Solstice et obliquité

Le solstice d’été s’avère un moment propice pour aborder le sujet de l’obliquité de la Terre.

Dans l’hémisphère nord où vit 90 % de la population mondiale, l’été survient autour du 21 juin de chaque année au moment appelé le solstice. Ce mot dérivé du latin solstitium signifie que le soleil (sol) semble s’arrêter (stare). Pas que le Soleil cesse de bouger dans le ciel, mais il semble cesser de modifier sa trajectoire ascendante.

Obliquité

Évidemment, le Soleil ne bouge pas vraiment. C’est la Terre qui, au cours de sa révolution autour de lui, présente à ce moment de l’année l’inclinaison de son axe de rotation dans une position telle que la clarté diurne dure plus longtemps, les nuits sont donc les plus courtes. Sans l’inclinaison de l’axe de rotation de la Terre, ce phénomène annuel n’existerait pas, les nuits et les jours seraient toujours identiques et d’égales durées et il n’y aurait qu’une seule saison.

On peut donc considérer l’inclinaison de l’axe de rotation de notre planète comme la grande responsable des variations climatiques annuelles. Je vais donc «me pencher» un peu plus sur cette fameuse inclinaison pour mieux la comprendre.

Obliquite_plan_ecliptique.png

Les planètes et les étoiles se forment par l’agrégation (accrétion) d’un nuage de gaz et de poussières tournant dans un plan de rotation quelconque. Ce plan est appelé l’écliptique et toutes les futures planètes non perturbées partageront à peu de chose près ce même plan. Le nuage de poussières et de gaz se fragmente en créant des tourbillons internes en forte rotation sans toutefois cesser de faire le tour de l’astre central qui deviendra l’étoile. Si rien ne vient déranger ce scénario, l’axe de rotation des tourbillons sur eux-mêmes qui deviennent graduellement des planètes et l’axe de l’écliptique se confondent parfaitement puisqu’ils émanent du même phénomène qui est la rotation du nuage originel.

Dans ces circonstances idéales, les planètes n’ont aucune obliquité. En réalité, toutes les planètes du système solaire possèdent un penchant plus ou moins important, sauf Mercure en première approximation. Si Jupiter ne penche que de 3°, Saturne, Mars, Neptune et la Terre s’inclinent entre 20° et 30°. L’obliquité de notre planète est actuellement de 23°26’14’’ et c’est loin d’être la plus prononcée. Uranus roule sur le côté, quasiment comme une boule de bowling, faisant un angle impressionnant de 98°. Toutefois, la palme revient à notre sœur Vénus qui se retrouve à 177°. C’est-à-dire que son ancien pôle Nord se retrouve aujourd’hui au sud, elle a complètement basculé. On le sait puisque sa rotation est rétrograde.

L’obliquité des planètes peut avoir été causée par d’anciennes collisions cosmiques de grande envergure. Au commencement, notre système solaire comptait bien plus de planètes qu’aujourd’hui. Plusieurs protoplanètes se sont heurtées en créant de plus gros corps célestes et ces collisions surviennent rarement à un angle nul entre les deux objets. Ce faisant, l’axe de rotation est nécessairement perturbé et c’est ainsi que les planètes résultantes peuvent se retrouver avec une obliquité plus ou moins prononcée.

La Terre n’a pas échappé à ce genre de cataclysme. Une planète de la taille de Mars l’aurait heurtée très tôt dans son histoire. On a donné le nom de Théia à celle qui est venue nous embrasser. Aujourd’hui, on est pas mal certain que la Lune aurait émané de ce terrible choc par l’accrétion des débris projetés dans l’espace. L’obliquité de la Terre viendrait peut-être de cette collision.

La présence rapprochée de notre Lune stabilise l’axe de rotation de la Terre qui sinon aurait tendance à devenir beaucoup plus instable. Moins de conditions changeantes favorisent l’évolution des êtres vivants vers plus de complexité.

L’obliquité de la Terre n’est pas constante, en fait rien n’est vraiment stable dans la nature et encore moins la mécanique céleste. L’inclinaison varie à cause de deux phénomènes que sont la précession et la nutation. La précession est le changement de position de l’axe de rotation. Il tourne lentement sur lui-même, mais si cette rotation était parfaitement circulaire, l’obliquité ne varierait pas. Le fait qu’il décrive une ellipse cause un changement de valeur de l’angle. La nutation, quant à elle, se présente comme une légère oscillation de l’axe de rotation. Le rebord de l’ellipse est crénelé, un peu comme une dentelle. Ces deux mouvements conjugués de la Terre modifient légèrement l’inclinaison de son axe de 2,5° au total sur une période d’environ 41000 ans.

Precession_Nutation

L’obliquité est une bénédiction, car elle permet à la chaleur solaire de se distribuer un peu plus équitablement sur la planète. En plus de donner plusieurs saisons distinctes dans les deux hémisphères, elle permet d’amenuiser les écarts de température entre les pôles et l’équateur. Avec une obliquité nulle, il ferait beaucoup trop chaud aux basses latitudes et beaucoup trop froid aux latitudes élevées. Il ne resterait que deux bandes où l’humain pourrait vivre plus ou moins confortablement. L’une d’entre elles serait située dans l’hémisphère sud, là où il n’y a presque pas de terres, il ne resterait en tout et partout que la bande située au nord pour pouvoir s’émanciper.

L’humain n’aurait probablement jamais vu le jour, mais qui sait? Les parasites ont toujours plus d’un tour dans leur sac. Notre planète pourrait être aux prises avec nous, essayant de modifier l’obliquité afin d’augmenter la surface des territoires habitables. Je n’ose pas penser aux solutions imaginées pour parvenir à cette fin.

L’obliquité de la Terre nous évite donc de faire les idiots. Bah! Faut pas trop s’en faire, il reste tellement de façons de lui causer des torts, au bout du compte, une de moins ne fera pas grande différence.

Le trou noir s’en vient !

Titre alarmiste, je sais. J’aurais dû titrer «L’image du trou noir s’en vient». Voilà à peine plus d’une semaine, j’écrivais un article dans lequel je cassais du sucre sur le dos de l’équipe de l’EHT pour avoir promis l’image réelle d’un trou noir en 2017, puis en 2018, et ensuite pour avoir gardé le silence depuis près de 9 mois.

Vous pourriez croire que mon article de la semaine passée était «arrangé avec le gars des vues» (expression chère à mon père lorsque la fin d’un film tombait un peu trop bien, afin que le bon gars puisse toujours gagner, sans égard à l’improbabilité des événements). Qui sait si mon article était véritablement dû à la chance pure, à une probabilité réaliste ou si j’ai profité d’informations non publiques?

event-horizon-telescope

Dans moins de deux jours, l’équipe de l’EHT a convié la presse internationale à une annonce exceptionnelle. Ça ne prend pas la tête à Papineau (expression québécoise consacrée) pour comprendre ce qu’ils veulent nous révéler. Ils vont nous montrer une image du trou noir qui se terre au cœur de notre Galaxie, le fameux Sgr A*. Tout le suspens ne se situe pas à ce niveau, mais ce à quoi l’image du trou noir ressemblera. Bien des gens ont misé sur le fait qu’on ne verra rien de semblable aux belles simulations numériques et je suis pas mal en accord avec ceux-ci.

Mon scepticisme ne se situe pas au niveau de l’existence du monstre galactique situé en plein cœur de la Voie lactée, je suis pas mal certain qu’il existe réellement. Je me questionne sur son apparence, sur ce que révèlera l’image prise de lui.

Supermassive black hole with torn-apart star (artist’s impress

Noir. Le trou noir sera noir, me direz-vous. Ce serait plutôt logique qu’un trou noir réputé pour ne rien recracher de ce qui a traversé son «horizon des événements», lumière incluse, paraisse noir. Et pourtant, un trou noir de cette masse, 4 millions de Soleils, qui bouffe des nappes de gaz ayant eu le malheur de s’aventurer trop près, risque de nous surprendre.

Tout d’abord, on en sait très peu sur sa vitesse de rotation. Comme tout ce qui se trouve dans l’Univers, ce trou noir tourne sur lui-même. Son environnement immédiat est affecté par cette vitesse de rotation et le résultat pourrait nous surprendre.8300758-3x2-700x467

Il faut savoir que cette image n’est pas un instantané, mais un montage très complexe de données diverses prises par tout un tas de télescopes différents, à de moments différents, à des longueurs d’ondes différentes, couplés en interféromètres simples ou multiples.

Ensuite, j’ai toujours douté de l’exactitude des représentations théoriques des effets relativistes. Quelque chose me dit que la vraie vie fera apparaitre une complexité bien plus grande et donc un trou noir bien moins évident à décortiquer et à analyser.

6848274_44f7c67a15bc4925d23231d69364fab11b3928b4_1000x625

Et enfin, même avec tout le respect qu’on doit à ce cher Einstein pour ses équations qui ont révélé la potentielle existence de ces monstres galactiques aux couleurs du Corbot, les trous noirs fricotent aussi bien du côté relativiste de la physique que du côté quantique et c’est là tout son intérêt. Cet objet unique en son genre réussit à exister en poussant les deux théories antagonistes dans leurs derniers retranchements.

Exprimé autrement, le trou noir établit un pont qui n’existe pas actuellement entre nos deux théories et seulement pour cette raison, l’image qu’on s’attend de lui ne peut pas parfaitement lui ressembler.

MIT-Blackhole-Jet_0

Dans moins de deux jours, on en saura un peu plus sur Sgr A*, mais il faut également s’attendre à ce que nous nous forgions tout un tas de nouvelles questions à son sujet. C’est ainsi que progresse la science, par théories et par preuves observationnelles, et on recommence sans jamais voir la fin.

Si l’équipe de l’EHT a réussi un petit miracle et qu’elle nous dévoile une image à la hauteur des attentes, on le saura assez rapidement. Si elle est seulement parvenue à obtenir un résultat duquel aucune conclusion ne peut être tirée et ainsi à renvoyer la balle vers une autre expérience encore plus ambitieuse, on le saura aussi.

Soyez toutefois certain que je ne manquerai pas l’occasion de commenter le contenu de cette conférence de presse dès que j’aurai le temps de l’analyser suffisamment pour écrire quelque chose de personnel et, espérons-le, intelligent, à son sujet.

Librations

L’humain connait la Lune, notre satellite naturel, depuis qu’il lève les yeux vers le ciel. Alors sauriez-vous répondre à cette petite question? Quel est le pourcentage de la surface de la Lune observable de la Terre?

Ouais, vous n’êtes pas très astronome et les caractéristiques des astres ne vous émoustillent pas vraiment. Je sais. Malgré tout, vous pensez connaitre la réponse à cette question somme toute aisée.

7447053_343ff1b2-deb1-11e7-9a47-bf3c08145785-1_1000x625

La Lune nous montre toujours la même face, c’est bien connu. Vous ignorez certainement pourquoi, cependant à cause de ce phénomène, vous déduisez ce qui suit. La Lune est une sphère et si elle nous montre toujours la même face, on voit alors 50 % de toute sa surface.

Vous seriez même tenté de réduire un peu ce pourcentage puisque tout le rebord n’est pas très facile à observer, voire quasiment impossible. Est-ce que le chiffre de 45 % vous semblerait plus réaliste? Probablement.

pleineulune.jpg

Toutefois, le vrai pourcentage observable de la surface lunaire est plus proche de 59 %. Hein? Comment peut-on voir une bonne partie de sa face « cachée »? C’est à cause des librations, le terme utilisé pour parler de ce phénomène.

La Lune nous montre toujours la même face puisque sa période de rotation (sur elle-même) est égale à sa période de révolution (autour de la Terre). Ce n’est pas un hasard. Les forces de marée entre les deux astres incitent le moins massif des deux à atteindre plus rapidement ce point d’équilibre en ralentissant graduellement sa rotation jusqu’à l’atteinte du verrouillage, un point de moindre énergie.

Pleine-Lune

Et pour prouver que rien ne sera simple, il existe quatre types de librations, raisons pour lesquelles le pourcentage de surface visible atteint 59 %. Parlons des librations en longitude, des librations en latitude, des librations parallactiques et enfin des librations physiques.

Les librations en longitude sont dues à la forme elliptique de l’orbite lunaire autour de la Terre. Les librations en latitude dépendent de l’angle de cette orbite par rapport à son angle de rotation qui est de 6,7 degrés. Réparties sur plusieurs lunaisons, nous observons un peu plus du pôle Nord et ensuite un peu plus du pôle Sud. La Lune semble hocher du bonnet.

ob_9a96d7_moon-sur-blog-rene-dumonceau

À douze heures d’intervalle, on peut également voir encore plus de sa surface grâce à l’effet de parallaxe, c’est lorsque nous nous trouvons alternativement du côté gauche et du côté droit de la Terre lorsqu’elle tourne sur elle-même. L’angle créé entre ces deux positions par rapport à la Lune est suffisant pour en voir encore un peu plus. Ce sont les librations parallactiques.

Et enfin les librations physiques se rapportent aux oscillations réelles de notre satellite, car pour rester ainsi verrouillée, la Lune oscille légèrement comme tout objet en « équilibre ». Ces petites oscillations autour d’un point central permettent de voir un peu plus de sa surface lorsque ces mouvements s’additionnent aux autres librations. Et voilà pourquoi 9 % de sa face cachée nous sont tout de même accessibles depuis la Terre. Les 41 % restants ne peuvent être vus que si nous nous déplaçons physiquement dans l’espace, nous ou nos instruments.

cover-r4x3w1000-57df810861bd4-pleine-lune_0

Promenez-vous sur le web et observez attentivement plusieurs photos de la pleine Lune. Vous verrez qu’elle se montre légèrement différente d’un cliché à l’autre. Vous n’aviez jamais porté attention à ce phénomène? La belle-de-nuit se dévoile bien plus à qui sait l’admirer.

‘Oumuamua, le mystère s’épaissit

Je vous ai parlé à quelques reprises de cet objet spatial repéré le 19 octobre 2017 qui a été officiellement classé dans la catégorie des objets interstellaires, c’est-à-dire que sa provenance est extérieure à notre système solaire. Il est le premier de son genre à être répertorié.

Vous trouverez les liens vers mes autres articles traitant de cet objet au bas du présent texte.

Qu’il soit astéroïde ou comète, sa forme très inhabituelle de cigare dix fois plus long que large, sa métallicité très élevée et son revêtement mou de couleur rouge foncé le rendent des plus bizarre. Mais il y a plus. Des études fines de sa trajectoire viennent rajouter une couche de mystère supplémentaire à son sujet.

Lors de son passage à proximité du Soleil, ‘Oumuamua suivait sur une trajectoire hyperbolique qui le fait s’éloigner définitivement de nous. Des astronomes ont toutefois noté une augmentation supplémentaire de sa vitesse, suggérant un dégazage semblable à ce qui survient aux comètes et qui crée leur chevelure si caractéristique. Notez qu’aucune queue de gaz n’a toutefois été repérée et seule son accélération l’a été.

Ce phénomène bien connu des astronomes est censé occasionner certains changements comportementaux à l’astre. La rotation de l’objet sur lui-même devrait se modifier. Or à ce chapitre ‘Oumuamua n’a pas semblé se comporter différemment. De plus, l’astrophysicien Roman Rafikov de l’Université Cambridge conclut que les effets du dégazage auraient dû causer sa dislocation. Pourtant, notre visiteur extrasolaire est bien resté en un seul morceau.

Une théorie alternative laisse entendre que cet objet semble trop peu naturel pour ne pas être artificiel. Certains le voient donc comme une sorte de sonde spatiale envoyée par une autre civilisation. Il récolterait des informations sur les différents systèmes planétaires qu’il croiserait en chemin. Cependant, il n’émet aucune onde électromagnétique, ni pour sonder son entourage ni pour transmettre les informations recueillies au cours de son périple. Mais cette technologie équipant nos propres sondes pourrait être ringarde et remplacée à bord d’Oumuamua par quelque chose de plus performant que nous ne connaissons pas.

Objet céleste naturel atypique ou engin spatial extraterrestre ? On ne connaitra peut-être jamais la vérité à son sujet.

Référence : L-express.ca via Agence Science-Presse

 

Mes autres articles traitant de ‘Oumuamua

2018, l’année de tous les séismes ?

Deux chercheurs sismologues ont fait une étrange prédiction qui ressemble plus à une mauvaise blague qu’à des travaux d’analyse sérieux. Et pourtant, il se pourrait bien que la Nature leur donne raison et que leur prédiction s’avère. Quant à savoir si la raison qu’ils avancent est la vraie cause, il faudra plus d’incidents pour le prouver sans équivoque.

La rotation de la Terre ralentit peu à peu. Les jours s’allongent donc imperceptiblement et certaines années plus que d’autres. En analysant les données des 150 dernières années, un clin d’œil sur le plan géologique, les deux chercheurs ont établi une concordance entre les années où ce ralentissement est plus accentué et celles où plusieurs séismes supérieurs à 8,4 sur l’échelle Richter sont survenus. Un décalage de 5 ans semble relier les ralentissements importants aux années de grands séismes.

Mais concordance ne signifie pas toujours corrélation. En science, des données concordantes sont fréquentes et proviennent souvent de données partielles, insuffisantes ou simplement à des coïncidences. Ainsi, trouver des concordances n’est que le début de l’enquête et elles mènent souvent à des culs-de sac. Inversement, certaines corrélations nous passent fréquemment sous le nez puisque les relations de causes à effets nous apparaissent comme trop improbables pour être véridiques.

Mais il se pourrait que les deux chercheurs aient raison, car les deux phénomènes sont liés au noyau de notre Planète. De légères asymétries mécaniques engendrent des oscillations du Globe qui se répercutent sur la durée des jours, ainsi que sur le déplacement des contraintes sur les failles des différentes couches rocheuses.

Si cette prédiction s’avère, ce serait une première dans le monde géologique, mais là encore, des coïncidences sans incidences peuvent très bien survenir. Par exemple, on sait tous que la faille de San Andreas est due pour un coulissage majeur et elle est même en retard par rapport aux analyses. Qu’il survienne en 2018 ne signifierait pas qu’il ne se serait pas produit si la durée des jours était resté similaire durant l’année 2013.

S’il existe un intérêt certain à suivre le déroulement des séismes majeurs l’an prochain, on ne peut oublier que lorsqu’ils surviendront, ils feront énormément de victimes, peu importe les lieux. Certains chanceux s’en tireront indemnes, mais plusieurs personnes subiront des blessures graves et beaucoup d’autres y perdront la vie. C’est la triste réalité que les chercheurs tentent de comprendre afin de minimiser les conséquences. Mais qu’en est-il des populations vivant à proximité des zones à hauts risques ? Iront-elles s’établir ailleurs ? C’est très peu probable. L’humain vit sans se soucier de la science, même si, elle, se soucie de lui. Alors on déplorera d’innombrables pertes, comme si personne n’avait jamais prédit ces grandes années de cataclysmes.

Photo : www.openinventor.com