Peuples galactiques

En raison de l’exploration de notre seul système solaire, nous savons que les exoplanètes telluriques ne sont pas toutes susceptibles d’abriter la vie. Tout d’abord, les planètes doivent se retrouver dans l’anneau d’habitabilité, là où la température de l’eau à la surface peut se maintenir autour des 25 °C.

Il existe aussi une question de gravité. Une planète trop petite et trop peu dense ne pourra pas retenir son atmosphère et sans elle, l’eau s’évapore. De plus, les rayons cosmiques et stellaires bombardent sa surface, la rendant carrément stérile.

1bb29fb84b_106480_mars-rouge-ok

Mais une planète trop grosse possède d’autres désavantages qui se rapportent à sa vitesse de libération ou, autrement dit, sa vitesse d’échappement. Cela correspond à la vitesse d’un véhicule spatial se libérant de l’attraction gravitationnelle de son astre. Cette vitesse dépend de la masse et du rayon de la planète.

La Terre possède une vitesse de libération d’environ 40 000 km/h. Pour une densité comparable à celle de la Terre, mais d’un rayon deux fois plus important, la vitesse de libération double également. Si l’exoplanète possède une plus forte densité, soit un rapport plus important de sa masse sur son volume, sa vitesse de libération augmentera d’autant.

755912398-登月火箭-土星五号-火箭发射-阿波罗计划

Pour atteindre la vitesse de libération, cela exige de consommer du carburant. Plus cette vitesse est importante, plus le carburant à embarquer à bord de la fusée doit être important. Le problème est qu’avec du poids supplémentaire, ça prend encore plus de carburant et la fusée pèsera encore plus lourd.

Ce cercle vicieux occasionne qu’avec une propulsion chimique, il existe une limite de vitesse de libération au-delà de laquelle, il devient impossible de lancer une fusée dans l’espace.

000_s562g_1-674473

Cela signifie que les peuples extraterrestres ne sont pas tous en mesure de visiter l’espace. Certains restent prisonniers de leur planète jusqu’à ce qu’ils puissent bénéficier d’une propulsion beaucoup plus efficace que les réactions chimiques.

On pourrait penser à des réactions nucléaires ou de la production d’énergie grâce à l’interaction matière-antimatière. Toutefois, le temps permettant de contrôler ces énergies plus exotiques empêcherait ces peuples d’envoyer des satellites et des sondes en orbite comme les humains le font depuis soixante ans uniquement grâce à des réactions chimiques bien ordinaires.

La planète Mars fait partie de celles ayant des dimensions trop petites pour préserver leur atmosphère. Dans l’autre extrême, les superterres actuellement connues risquent de piéger leurs habitants à leur surface tellement la vitesse de libération risque d’être trop importante.

correlation-exoplanetes

Le graphique montre les masses des exoplanètes connues par rapport à leur distance à leur étoile, le tout par rapport à la masse et à la distance de la Terre au Soleil. Les points bleus représentent les planètes de notre système solaire. Les points rouges, les exoplanètes connues à ce jour. Comme on peut le constater, la Terre, sa sœur Vénus et Mars semblent des exceptions dans la Galaxie, mais c’est seulement parce que détecter des planètes leur ressemblant s’avère bien plus difficile que de trouver des géantes gazeuses comme Jupiter ou Saturne. Nos moyens se raffinant et nos instruments scientifiques gagnant en précision et en acuité, bientôt les points rouges inonderont la région de ce graphique où les planètes rocheuses de notre système solaire se situent.

3468

Nous pouvons néanmoins nous féliciter de vivre sur une Terre suffisamment grosse pour retenir son atmosphère et ses océans sans toutefois souffrir d’embonpoint, une Terre au cœur de la zone habitable du Soleil, une Terre permettant aux fusées à propulsion chimique de lancer des satellites et des sondes partout dans son système solaire, une Terre à la mesure de notre curiosité et de nos ambitions présentes.

e-elt-3

Lorsque nous maitriserons d’autres types de propulsions beaucoup plus efficaces, nous aurons déjà plus d’un siècle d’expérience spatiale, d’envois de télescopes scrutateurs, de robots fouineurs, de sondes détectrices et d’humains déterminés. Nous serons prêts à entamer une nouvelle phase de notre parcours spatial, devenir un peuple galactique.

 

 

Cortège de trous noirs

Le cœur de la Voie lactée n’abrite pas seulement un trou noir supermassif de 4 millions de masses solaires, mais également une myriade de petits trous noirs stellaires. On en a recensé une douzaine jusqu’à présent, mais ce n’est que le début puisqu’on en prévoit des centaines.

Cette découverte n’est pas inattendue, bien au contraire. La Galaxie, comme beaucoup d’autres, possède un bulbe galactique entourant son centre. La densité de la population d’étoiles y est beaucoup plus forte qu’ailleurs. Le centre de notre Galaxie contient également ses plus vieilles étoiles. Pour ces raisons, trouver beaucoup d’étoiles s’étant transformées en trou noir près du centre galactique prouve que la Voie lactée est une galaxie normale.

trounoir.png

On avait prouvé voilà déjà plusieurs années que le centre galactique était effectivement un trou noir supermassif plutôt qu’un amas dense d’étoiles ordinaires. Le cortège de trous noirs stellaires gravitant dans son giron.

Contrairement à la croyance populaire, un trou noir supermassif ne se comporte pas comme un aspirateur. Les objets tournant autour de lui peuvent très bien conserver une orbite stable en conformité avec les lois de Kepler.

images-5

Le trou noir central accumule en son sein de la matière environnante uniquement lorsque certains objets ont été déviés par des collisions ou lorsque la Galaxie avale des nuages de gaz ou d’autres galaxies qui se sont trop rapprochés. Mais pour ce qui est des objets en orbite stable autour de son noyau, ils peuvent poursuivre leur ronde des millions d’années sans aucunement être avalés.

representation-trounoir-etoiles

Cette découverte a été réalisée par une équipe de la Nasa dirigée par Chuck Hailey avec le télescope Chandra détectant les rayons X. Due à toute la poussière et aux milliards d’étoiles situées entre nous et le centre de notre Galaxie, il est impossible d’utiliser un télescope opérant dans le visible ou aux longueurs d’onde s’y rapprochant. Seuls les rayons X et gamma peuvent sonder le centre de notre Voie lactée.

Le premier à avoir prédit des milliers de trous noirs de masse stellaire formant un disque tournant autour du trou noir supermassif central est le théoricien Mark Morris en 1993. Cette récente découverte ne révèle rien de surprenant. Toutefois, les moyens mis en œuvre pour le prouver repoussent encore plus loin nos compétences observationnelles.

Photos : ici-radio-canada.ca ; maxiscience.com ; astroalbastronomy.wordpress.com ; atlantico.fr

Extinctions et cycles

Il y a environ 252 millions d’années survenait la pire extinction de masse de l’histoire de la Terre, l’extinction Permien-Trias (P-Tr). Non, ce n’est pas celle correspondant à la disparition des dinosaures survenue voilà 66 millions d’années. C’est une autre et elle fut pire encore.

FinDinosaures

Si la cause de l’extinction Crétacé-Tertiaire (K-T), celle des dinosaures, est bien connue et généralement acceptée de la plupart des scientifiques, la bougie d’allumage de l’extinction du Permien-Trias (P-Tr) est beaucoup moins consensuelle. La chute d’une météorite est également évoquée pour expliquer pourquoi 95 % des espèces marines et 70 % des espèces terrestres ont disparu de la surface de la Terre puisque cette cause restera toujours la plus facile à démontrer.

TrouNoir1

On dénombre six extinctions massives incluant celle sévissant actuellement qui est causée par les activités humaines. Mis à part cette dernière dont la cause est unique, on dénombre 25 extinctions importantes ou massives depuis les 540 derniers millions d’années.

Les effets occasionnés par une météorite géante tombant sur la Terre sont assez bien connus. Des simulations numériques nous montrent la puissance d’un tel événement et l’étendue planétaire des dégâts. Des tremblements de terre de force 11 et des tsunamis géants ravagent la planète. Ensuite, la flore s’embrase puis disparait lorsque les retombées incandescentes font le tour de la terre. Puis l’hiver permanent prend la relève lorsque des centaines de volcans éperonnés par les séismes crachent sans relâche leurs éjecta de poussière durant des décennies. Ils saturent l’atmosphère d’acide sulfurique qui change drastiquement le pH des cours d’eau et des océans, tuant pratiquement toute vie sur Terre.

Manicouagan1.png

Cependant pour valider l’hypothèse d’une météorite, il faut retrouver le lieu d’où la catastrophe s’est produite. On doit donc chercher un astroblème pouvant être daté de cette époque et suffisamment grand pour correspondre à la taille d’une cicatrice laissée par un caillou céleste ayant causé cette hécatombe. Selon la nature du sol, un astroblème fait de 10 à 20 fois les dimensions de la météorite.

Le diamètre minimal de l’astéroïde tueur devrait au moins être l’équivalent de celui ayant fait disparaitre les dinosaures, c’est-à-dire 10 km. Cependant, puisque l’ampleur de l’extinction est bien plus importante, cette estimation est jugée minimale par plusieurs scientifiques. Certains parlent plutôt d’une météorite faisant 45 kilomètres de diamètre. Elle pourrait être tombée en Antarctique où une anomalie gravitationnelle de 600 km de diamètre a été décelée.

AntarctiqueAnomalie

Si l’hypothèse de la météorite s’avère probable et plutôt pratique pour expliquer l’extinction Permien-Trias, on ne peut exclure d’autres causes dont certaines peuvent être cycliques. Par exemple, une autre extinction de masse, la deuxième en importance, s’est produite voilà 485 millions d’années. C’est l’extinction de l’Ordovicien-Silurien (O-S). La différence est de 233 millions d’années avec la suivante, moins de 10 % par rapport à 252 millions d’années. Et fait troublant, notre Soleil se déplace dans la Galaxie. Il tourne autour de son noyau en 220 ou 250 millions d’années. Ce chiffre est difficile à préciser, mais il correspond au 233 millions à 252 millions d’années.

J’ai ensuite calculé la différence moyenne de temps entre deux extinctions en utilisant la liste des 25 plus importantes disparitions recensées jusqu’à maintenant. Un cataclysme planétaire survient en moyenne à tous les 26 millions d’années. Il semble donc qu’un cycle existe réellement pour expliquer la majorité des extinctions survenues sur Terre.

SoleilPlanGalactique

Je me suis rappelé avoir appris que le Soleil oscille de haut en bas autour du plan galactique, passant en dessous puis revenant au-dessus selon un cycle d’environ 30 millions d’années. Toutefois, ce chiffre est entaché d’une marge d’erreur importante. En admettant que ce mouvement oscillatoire prenne 26 millions d’années plutôt que 30 millions, ce chiffre correspondrait très bien à la moyenne des extinctions importantes survenant sur Terre.

Ainsi, quelque chose se produirait lorsque la Terre passe à une certaine hauteur par rapport au plan galactique. Ce pourrait être une bouffée de rayons gamma, car l’atmosphère terrestre est fortement perturbée lorsqu’elle est attaquée par ces rayons énergétiques. La couche d’ozone disparait et sans elle, les rayons gamma attaquent tous les êtres vivants de la planète, causant des extinctions massives. Malheureusement, si les rayons gamma en sont la cause, il n’en reste plus aucune trace. Cette hypothèse ne pourra être validée que lors de la prochaine catastrophe !

GammaRays1

Voilà donc une autre menace à rajouter à notre calendrier des événements catastrophiques à survenir. Comme quoi il est dangereux de vivre dans notre Galaxie. Pourtant, elle semble bien plus sûre que d’autres univers-iles ayant un noyau très actif alors que le nôtre est en dormance.